Fr. 190.00

Thermal and Structural Electronic Packaging Analysis for Space and - Extreme Environment

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more










This book provides useful and practical approaches to solving the most complex thermal-structural problems ever attempted for design spacecraft to survive the severe cold of deep space, as well as the unforgiving temperature swings on the surface of Mars.

List of contents

Introduction. New Space. Thermal/Structural Challenges in Miniaturizing. Fundamental of Heat Transfer by Conduction and Convection. Fundamentals of Heat Transfer by Radiation. The Multi-Layer Insulation (MLI) Blanket. Heat Pipes. Convective Cooling of Semiconductors using a Nanofluid. Power Systems: The Tesla Turbine. Electronics Design for Extreme Temperature and Pressure. Characterization and Modeling of PWB Warpage and its Effect on LGA Separable Interconnects. Resistor Networks. Thermal Analysis Case Studies. Random Vibration Structural Analysis and Mile’s Equation. Vibrational Analysis Case Studies. Creep Prediction of a Printed Wiring Board for Separable Land Grid Array Connector. Operational Case Studies – Mars Surface Operations. Operational Case Studies – Dawn Asteroid Mission. Standards.

About the author

Juan Cepeda-Rizo obtained his bachelor’s degree in mechanical engineering and master’s in materials engineering from Cal Poly, San Luis Obispo in 1997. After graduation he worked for a semiconductor company doing electronic packaging analysis. He received his Ph.D. from Claremont Graduate University in Applied Mathematics in and in 2008 worked for NASA’s Jet Propulsion Laboratory as a thermal system engineer where his latest responsibilities included thermal and structural analysis of flight electronics.
Jeremiah Gayle obtained his bachelor’s degree in mechanical engineering from Arizona State University, and master’s degrees from Iowa State, and John Hopkins University in space systems engineering. He is pursuing a doctorate in aerospace engineering from Colorado State University and works at NASA’s Jet Propulsion Laboratory where he works on spacecraft systems and conducts thermal and structural analysis of avionics.
Joshua Ravich is a supervisor for the Technology Infusion group at JPL, where he works on the mechanical design and analysis of spacecraft systems. His recent work has included the Mars Helicopter project. He received a bachelor's degree in mechanical Engineering from UC Berkeley and a master's in mechanical and aerospace engineering from the University of Michigan.

Summary

This book provides useful and practical approaches to solving the most complex thermal-structural problems ever attempted for design spacecraft to survive the severe cold of deep space, as well as the unforgiving temperature swings on the surface of Mars.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.