Fr. 62.00

Ansätze zur lokalen Bayes'schen Fusion von Informationsbeiträgen heterogener Quellen

German · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Die Lösung diverser Aufgaben profitiert von der Informationsfusion oder setzt sie sogar voraus. Die Bayes'sche Fusionsmethodik ist anschaulich, fundiert und erfüllt die essentiellen Anforderungen an eine sinnvolle Methodik auch zur Fusion der Beiträge heterogener Informationsquellen. In vielen praktisch relevanten Aufgaben verursachen Bayes'sche Verfahren hohen, oft nicht tragbaren Aufwand. In der Arbeit werden neuartige Ansätze zur Bewältigung Bayes'scher Fusion formuliert und untersucht. The solution of various tasks benefits from information fusion or even requires it. The Bayesian fusion methodology is clear, well-founded and fulfills the essential requirements for a meaningful methodology also for fusing the contributions of heterogeneous information sources. In many practically relevant tasks, Bayesian methods cause high, often unacceptable effort. In the work, novel approaches to cope with Bayesian fusion in such situations are formulated and investigated.

Product details

Authors Jennifer Sander
Publisher KIT Scientific Publishing
 
Languages German
Product format Paperback / Softback
Released 01.01.2021
 
EAN 9783731510628
ISBN 978-3-7315-1062-8
No. of pages 342
Weight 630 g
Illustrations graph. Darst.
Series Karlsruher Schriften zur Anthropomatik / Lehrstuhl für Interaktive Echtzeitsysteme, Karlsruher Institut für Technologie ; Fraunhofer-Inst. für Optronik, Systemtechnik und Bildauswertung IOSB Karlsruhe
Subjects Guides
Natural sciences, medicine, IT, technology > IT, data processing > Miscellaneous

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.