Fr. 68.90

Intro to Analysis - Global 4th Edition

English · Paperback / Softback

Shipping usually within 1 to 3 working days

Description

Read more

List of contents

Part I. ONE-DIMENSIONALTHEORY

1. The Real Number System

1.1 Introduction

1.2 Ordered field axioms

1.3 Completeness Axiom

1.4 Mathematical Induction

1.5 Inverse functions and images

1.6 Countable and uncountable sets

 

2. Sequences in R

2.1 Limits of sequences

2.2 Limit theorems

2.3 Bolzano-Weierstrass Theorem

2.4 Cauchy sequences

*2.5 Limits supremum and infimum 

3. Functions on R

3.1 Two-sided limits

3.2 One-sided limits and limits atinfinity

3.3 Continuity

3.4 Uniform continuity

 

4. Differentiability on R

4.1 The derivative

4.2 Differentiability theorems

4.3 The Mean Value Theorem

4.4 Taylor's Theorem and l'Hôpital'sRule

4.5 Inverse function theorems 

5 Integrability on R

5.1 The Riemann integral

5.2 Riemann sums

5.3 The Fundamental Theorem ofCalculus

5.4 Improper Riemann integration

*5.5 Functions of boundedvariation

*5.6 Convex functions 

6. Infinite Series of Real Numbers

6.1 Introduction

6.2 Series with nonnegative terms

6.3 Absolute convergence

6.4 Alternating series

*6.5 Estimation of series

*6.6 Additional tests 

7. Infinite Series of Functions

7.1 Uniform convergence ofsequences

7.2 Uniform convergence of series

7.3 Power series

7.4 Analytic functions

*7.5 Applications 

Part II. MULTIDIMENSIONAL THEORY 

8. Euclidean Spaces

8.1 Algebraic structure

8.2 Planes and lineartransformations

8.3 Topology of Rn

8.4 Interior, closure, and boundary 

9. Convergence in Rn

9.1 Limits of sequences

9.2 Heine-Borel Theorem

9.3 Limits of functions

9.4 Continuous functions

*9.5 Compact sets

*9.6 Applications 

10. Metric Spaces

10.1 Introduction

10.2 Limits of functions

10.3 Interior, closure, boundary

10.4 Compact sets

10.5 Connected sets

10.6 Continuous functions

10.7 Stone-Weierstrass Theorem 

11. Differentiability on Rn

11.1 Partial derivatives andpartial integrals

11.2 The definition ofdifferentiability

11.3 Derivatives, differentials, andtangent planes

11.4 The Chain Rule

11.5 The Mean Value Theorem andTaylor's Formula

11.6 The Inverse Function Theorem

*11.7 Optimization 

12. Integration on Rn

12.1 Jordan regions

12.2 Riemann integration on Jordanregions

12.3 Iterated integrals

12.4 Change of variables

*12.5 Partitions of unity

*12.6 The gamma function andvolume 

13. Fundamental Theorems of VectorCalculus

13.1 Curves

13.2 Oriented curves

13.3 Surfaces

13.4 Oriented surfaces

13.5 Theorems of Green and Gauss

13.6 Stokes's Theorem 

Wade’s research interests include problems of uniqueness, growth and dyadic harmonic analysis, on which he has published numerous papers, two books and given multiple presentations on three continents. His current publication, An Introduction to Analysis,is now in its fourth edition.
In his spare time, Wade loves to travel and take photographs to document his trips. He is also musically inclined, and enjoys playing classical music, mainly baroque on the trumpet, recorder, and piano.

Summary

For one- or two-semester junior orsenior level courses in Advanced Calculus, Analysis I, or Real Analysis.
This title is part of the Pearson Modern Classicsseries.
This text prepares students for future coursesthat use analytic ideas, such as real and complex analysis, partial andordinary differential equations, numerical analysis, fluid mechanics, anddifferential geometry. This book is designed to challenge advanced studentswhile encouraging and helping weaker students. Offering readability,practicality and flexibility, Wade presents fundamental theorems and ideas froma practical viewpoint, showing students the motivation behind the mathematicsand enabling them to construct their own proofs.

Product details

Authors William Wade, William R. Wade
Publisher Pearson Academic
 
Languages English
Product format Paperback / Softback
Released 30.09.2021
 
EAN 9781292357874
ISBN 978-1-292-35787-4
Series Pearson
Subject Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.