Fr. 178.00

Feature Learning and Understanding - Algorithms and Applications

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This book covers the essential concepts and strategies within traditional and cutting-edge feature learning methods thru both theoretical analysis and case studies. Good features give good models and it is usually not classifiers but features that determine the effectiveness of a model. In this book, readers can find not only traditional feature learning methods, such as principal component analysis, linear discriminant analysis, and geometrical-structure-based methods, but also advanced feature learning methods, such as sparse learning, low-rank decomposition, tensor-based feature extraction, and deep-learning-based feature learning. Each feature learning method has its own dedicated chapter that explains how it is theoretically derived and shows how it is implemented for real-world applications. Detailed illustrated figures are included for better understanding. This book can be used by students, researchers, and engineers looking for a reference guide for popular methods of feature learning and machine intelligence.

List of contents

Chapter1. A Gentle Introduction to Feature Learning.- Chapter2. Latent Semantic Feature Learning.- Chapter3. Principal Component Analysis.- Chapter4. Local-Geometrical-Structure-based Feature Learning.- Chapter5. Linear Discriminant Analysis.- Chapter6. Kernel-based nonlinear feature learning.- Chapter7. Sparse feature learning.- Chapter8. Low rank feature learning.- Chapter9. Tensor-based Feature Learning.- Chapter10. Neural-network-based Feature Learning: Autoencoder.- Chapter11. Neural-network-based Feature Learning: Convolutional Neural Network.- Chapter12. Neural-network-based Feature Learning: Recurrent Neural Network.

About the author










Haitao Zhao is currently a full professor at the School of Information Science and Engineering, East China University of Science and Technology (ECUST), Shanghai, China. His research interests include feature extraction, representation learning, feature fusion, classifier design and their applications in image processing and computer vision.

Henry Leung is a professor of the Department of Electrical and Computer Engineering of the University of Calgary. His current research interests include information fusion, machine learning, IoT, nonlinear dynamics, robotics, signal and image processing. He is a Fellow of IEEE and SPIE. 

Zhihui Lai was a Postdoctoral Fellow at the Bio-Computing Research Center, Shenzhen Graduate School, Harbin Institute of Technology (HIT) in 2011-2013. He is now a full professor at the College of Computer Science and Software Engineering, Shenzhen University.

Xianyi Zhang
is a postgraduate at the School of Information Science and Engineering, East China University of Science and Technology (ECUST), Shanghai, China. His research interests include pattern recognition, machine learning and image processing.


Product details

Authors Zhihu Lai, Zhihui Lai, Henry Leung, Henry et al Leung, Xianyi Zhang, Haita Zhao, Haitao Zhao
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 18.04.2021
 
EAN 9783030407964
ISBN 978-3-0-3040796-4
No. of pages 291
Dimensions 155 mm x 16 mm x 235 mm
Illustrations XIV, 291 p. 126 illus., 109 illus. in color.
Series Information Fusion and Data Science
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Theoretical physics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.