Fr. 79.00

Theory of Stabilization for Linear Boundary Control Systems

English · Paperback / Softback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more










This book presents a unified algebraic approach to stabilization problems of linear boundary control systems with no assumption on finite-dimensional approximations to the original systems, such as the existence of the associated Riesz basis. A new proof of the stabilization result for linear systems of finite dimension is also presented, leading to an explicit design of the feedback scheme. The problem of output stabilization is discussed, and some interesting results are developed when the observability or the controllability conditions are not satisfied.

List of contents

Preliminary results - Stabilization of linear systems of finite dimension. Preliminary results: Basic theory of elliptic operators. Stabilization of linear systems of infinite dimension: Static feedback. Stabilization of linear systems of infinite dimension: Dynamic feedback. Stabilization of linear systems with Riesz Bases: Dynamic feedback. Output stabilization: lack of the observability and/or the controllability conditions. Stabilization of a class of linear control systems generating C0- semigroups. A Computational Algorhism for an Infinite-Dimensional Sylvester’s Equation.

About the author










Takao Nambu

Summary

This book presents a unified algebraic approach to stabilization problems of linear boundary control systems with no assumption on finite-dimensional approximations to the original systems, such as the existence of the associated Riesz basis. A new proof of the stabilization result for linear systems of finite dimension is also presented, leadin

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.