Fr. 198.00

Enhanced Polarisation Control and Extreme Electric Fields - Advances in Terahertz Spectroscopy Applied to Anisotropic Materials and Magnetic Phase Transitions

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

This thesis reports advances in terahertz time-domain spectroscopy, relating to the development of new techniques and components that enhance the experimentalist's control over the terahertz polarisation state produced by photoconductive emitters. It describes how utilising the dynamic magnetoelectric response at THz frequencies, in the form of electromagnons, can probe material properties at a transition between two magnetically ordered phases. Additionally, preliminary investigations into the properties of materials exposed to extreme terahertz optical electric fields are reported.
The work presented in this thesis may have immediate impacts on the study of anisotropic media at THz frequencies, with photoconductive emitters and detectors being the most commonly used components for commercially available terahertz spectroscopy and imaging systems, and by providing a new way to study the nature of magnetic phase transitions in multiferroics. In the longer term the increased understanding of multiferroics yielded by ultrafast spectroscopic methods, including terahertz time-domain spectroscopy, may help develop new magnetoelectric and multiferroic materials for applications such as spintronics.

List of contents

Introduction.- Terahertz Time-Domain Spectroscopy.- Rotatable-Polarisation Terahertz Time-Domain Spectroscopy of Anisotropic Media.- Scalable Interdigitated Photoconductive Emitters for the Electrical Modulation of Terahertz Beams With Arbitrary Linear Polarisation.- Tracking Disorder Broadening and Hysteresis in First-Order Phase Transitions via the Electromagnon Response in Improper Ferroelectrics.

Product details

Authors Connor Devyn William Mosley
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 07.03.2021
 
EAN 9783030669010
ISBN 978-3-0-3066901-0
No. of pages 115
Dimensions 155 mm x 12 mm x 235 mm
Illustrations XV, 115 p. 44 illus., 43 illus. in color.
Series Springer Theses
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Electricity, magnetism, optics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.