Fr. 100.00

Principles of Scattering and Transport of Light

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more










Light scattering is one of the most well-studied phenomena in nature. It occupies a central place in optical physics, and plays a key role in multiple fields of science and engineering. For students and researchers in these fields, this volume presents a comprehensive introduction to the subject.

List of contents










Foreword; Preface; 1. Introduction; Part I. Wave Optics: 2. Electromagnetic waves; 3. Geometrical optics; 4. Waves at interfaces; 5. Green's functions and integral representations; 6. Plane-wave expansions; 7. Diffraction; 8. Coherence theory: basic concepts; 9. Coherence theory: propagation of correlations; Part II. Scattering of Waves: 10. Scattering theory; 11. Optical theorem; 12. Scattering in model systems; 13. Renormalized perturbation theory; 14. Wave reciprocity; Part III. Wave Transport: 15. Multiple scattering: average field; 16. Multiple scattering: field correlations and radiative transport; 17. Radiative transport: multiscale theory; 18. Discrete scatterers and spatial correlations; 19. Time-dependent radiative transport and energy velocity; Part IV. Radiative Transport and Diffusions: 20. Radiative transport: boundary conditions and integral representations; 21. Elementary solutions of the radiative transport equation; 22. Problems with planar and azimuthal symmetry; 23. Scattering theory for the radiative transport equation; 24. Diffusion approximation; 25. Diffuse light; 26. Diffuse optics; 27. Scattering of diffuse waves; Part V. Speckle and Interference Phenomena: 28. Intensity statistics; 29. Some properties of Rayleigh statistics; 30. Bulk speckle correlations; 31. Two-frequency speckle correlations; 32. Amplitude and intensity propagators for multiply-scattered fields; 33. Far-field angular speckle correlations; 34. Coherent backscattering; 35. Dynamic light scattering; Part VI. Electromagnetic Waves and Near-field Scattering: 36. Vector waves; 37. Electromagnetic Green's functions; 38. Electric dipole radiation; 39. Scattering of electromagnetic waves; 40. Electromagnetic reciprocity and the optical theorem; 41. Electromagnetic scattering by subwavelength particles; 42. Multiple scattering of electromagnetic waves: Average field; 43. Multiple scattering of electromagnetic waves: radiative transport; 44. Bulk electromagnetic speckle correlations; 45. Near-field speckle correlations; 46. Speckle correlations produced by a point source; Exercises; Index.

About the author

Rémi Carminati is Professor of Physics at ESPCI Paris - PSL, before which he held a faculty position at Ecole Centrale Paris. He was awarded the Fabry-de-Gramont prize of the French Optical Society, and is a Fellow of the Optical Society of America.John C. Schotland is Professor of Mathematics at Yale University. He has held faculty positions at University of Pennsylvania and University of Michigan, where he was the founding director of the Michigan Center for Applied and Interdisciplinary Mathematics.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.