Fr. 186.00

Industrial Data Analytics for Diagnosis and Prognosis - A Random Effects Modelling Approach

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Discover data analytics methodologies for the diagnosis and prognosis of industrial systems under a unified random effects model
 
In Industrial Data Analytics for Diagnosis and Prognosis - A Random Effects Modelling Approach, distinguished engineers Shiyu Zhou and Yong Chen deliver a rigorous and practical introduction to the random effects modeling approach for industrial system diagnosis and prognosis. In the book's two parts, general statistical concepts and useful theory are described and explained, as are industrial diagnosis and prognosis methods. The accomplished authors describe and model fixed effects, random effects, and variation in univariate and multivariate datasets and cover the application of the random effects approach to diagnosis of variation sources in industrial processes. They offer a detailed performance comparison of different diagnosis methods before moving on to the application of the random effects approach to failure prognosis in industrial processes and systems.
 
In addition to presenting the joint prognosis model, which integrates the survival regression model with the mixed effects regression model, the book also offers readers:
* A thorough introduction to describing variation of industrial data, including univariate and multivariate random variables and probability distributions
* Rigorous treatments of the diagnosis of variation sources using PCA pattern matching and the random effects model
* An exploration of extended mixed effects model, including mixture prior and Kalman filtering approach, for real time prognosis
* A detailed presentation of Gaussian process model as a flexible approach for the prediction of temporal degradation signals
 
Ideal for senior year undergraduate students and postgraduate students in industrial, manufacturing, mechanical, and electrical engineering, Industrial Data Analytics for Diagnosis and Prognosis is also an indispensable guide for researchers and engineers interested in data analytics methods for system diagnosis and prognosis.

List of contents

Chapter 1 Introduction
 
Part 1 Statistical Methods and Foundation for Industrial Data Analytics
 
Chapter 2 Introduction to Data Visualization andChapteraracterization
 
Chapter 3 Random Vectors and the Multivariate Normal Distribution
 
Chapter 4 Explaining Covariance Structure: Principal Components
 
Chapter 5 Linear Model for Numerical and Categorical
 
Chapter 6 Linear Mixed Effects Model
 
Part 2 Random Effects Approaches for Diagnosis and Prognosis
 
Chapter 7 Diagnosis of Variation Source Using PCA
 
Chapter 8 Diagnosis of Variation Sources Through Random Effects Estimation
 
Chapter 9 Analysis of System Diagnosability
 
Chapter 10 Prognosis Through Mixed Effects Models for Longitudinal Data
 
Chapter 11 Prognosis Using Gaussian Process Model
 
Chapter 12 Prognosis Through Mixed Effects Models for Time-to-Event Data
 
Appendix: Basics of Vectors, Matrices, and Linear Vector Space
 
References
 
Index

About the author










Shiyu Zhou, is a Vilas Distinguished Achievement Professor in the Department of Industrial and Systems Engineering at the University of Wisconsin-Madison. He received his doctorate in Mechanical Engineering from the University of Michigan in 2000.
Yong Chen, is Professor in the Department of Industrial and Systems Engineering at the University of Iowa. He obtained his doctorate in Industrial and Operations Engineering from the University of Michigan in 2003.


Summary

Discover data analytics methodologies for the diagnosis and prognosis of industrial systems under a unified random effects model

In Industrial Data Analytics for Diagnosis and Prognosis - A Random Effects Modelling Approach, distinguished engineers Shiyu Zhou and Yong Chen deliver a rigorous and practical introduction to the random effects modeling approach for industrial system diagnosis and prognosis. In the book's two parts, general statistical concepts and useful theory are described and explained, as are industrial diagnosis and prognosis methods. The accomplished authors describe and model fixed effects, random effects, and variation in univariate and multivariate datasets and cover the application of the random effects approach to diagnosis of variation sources in industrial processes. They offer a detailed performance comparison of different diagnosis methods before moving on to the application of the random effects approach to failure prognosis in industrial processes and systems.

In addition to presenting the joint prognosis model, which integrates the survival regression model with the mixed effects regression model, the book also offers readers:
* A thorough introduction to describing variation of industrial data, including univariate and multivariate random variables and probability distributions
* Rigorous treatments of the diagnosis of variation sources using PCA pattern matching and the random effects model
* An exploration of extended mixed effects model, including mixture prior and Kalman filtering approach, for real time prognosis
* A detailed presentation of Gaussian process model as a flexible approach for the prediction of temporal degradation signals

Ideal for senior year undergraduate students and postgraduate students in industrial, manufacturing, mechanical, and electrical engineering, Industrial Data Analytics for Diagnosis and Prognosis is also an indispensable guide for researchers and engineers interested in data analytics methods for system diagnosis and prognosis.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.