Fr. 21.50

Integralrechnung frei nach Leibniz - Wie man Flächeninhalte mittels einer einzigen Grenzwertbetrachtung bestimmen kann

German · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

In einem Manuskript aus dem Jahre 1676 behandelt Gottfried Wilhelm Leibniz (1646 1716) die Integration monotoner Funktionen. Hieraus lässt sich eine Integrationstheorie entwickeln, mittels derer man alle in der Schule verwendeten Basisfunktionen integrieren und allgemeine Integrationsregeln herleiten kann. Im Gegensatz zu dem üblichen formalen Zugang benötigt diese Theorie nur einen propädeutischen Grenzwertbegriff, wie er in den KMK-Bildungsstandards gefordert wird; letztlich reicht eine einzige Grenzwertbetrachtung aus. Zudem wird die Integralrechnung nicht auf eine Umkehrung der Differentialrechnung reduziert.

List of contents

Integrale monotoner Funktionen.- Integration elementarer Funktionen.- Kommentare aus der Sicht der Universitäts- und der Schulmathematik.- Das Manuskript von Leibniz aus dem Jahre 1676 über Infinitesimalrechnung.- Weitere Bestimmungen von Integralfunktionen und Rechenregeln fur die Integration.- Analogie zum Hauptsatz der Differential- und Integralrechnung.

About the author

Peter Ullrich hat Mathematik und Physik für das Lehramt studiert und an den Universitäten Münster, Gießen, Augsburg und Siegen Positionen in Forschung und Lehre innegehabt, zuletzt als Professor für Mathematik und ihre Didaktik an der Universität Koblenz.

Summary

In einem Manuskript aus dem Jahre 1676 behandelt Gottfried Wilhelm Leibniz (1646–1716) die Integration monotoner Funktionen. Hieraus lässt sich eine Integrationstheorie entwickeln, mittels derer man alle in der Schule verwendeten Basisfunktionen integrieren und allgemeine Integrationsregeln herleiten kann. Im Gegensatz zu dem üblichen formalen Zugang benötigt diese Theorie nur einen propädeutischen Grenzwertbegriff, wie er in den KMK-Bildungsstandards gefordert wird; letztlich reicht eine einzige Grenzwertbetrachtung aus. Zudem wird die Integralrechnung nicht auf eine Umkehrung der Differentialrechnung reduziert.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.