Fr. 134.00

Theory of Electronic and Optical Properties of Atomically Thin Films of Indium Selenide

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This thesis provides the first comprehensive theoretical overview of the electronic and optical properties of two dimensional (2D) Indium Selenide: atomically thin films of InSe ranging from monolayers to few layers in thickness. The thesis shows how the electronic propertes of 2D InSe vary significantly with film thickness, changing from a weakly indirect semiconductor for the monolayer to a direct gap material in the bulk form, with a strong band gap variation with film thickness predicted and recently observed in optical experiments. The proposed theory is based on a specially designed hybrid k.p tight-binding model approach (HkpTB), which uses an intralayer k.p Hamiltonian to describe the InSe monolayer, and tight-binding-like interlayer hopping. Electronic and optical absorption spectra are determined, and a detailed description of subbands of electrons in few-layer films and the influence of spin-orbit coupling is provided. The author shows that the principal optical excitations of InSe films with the thickness from 1 to 15 layers broadly cover the visible spectrum, with the possibility of extending optical functionality into the infrared and THz range using intersubband transitions.   

List of contents

Part I: Introduction and basics.- Scientific context and motivation.- Laser-plasmas.- Part II: Experimental methods.- High-power lasers.- Transportable Paul trap for isolated micro-targets in vacuum.- Part III: Laser-microplasma interactions.- Laser-driven ion acceleration using isolated micro-sphere targets.- Laser-driven micro-source for bi-modal radiographic imaging.- Part IV: Summary and perspectives.- Summary.- Challenges and perspectives.- Appendix.

Product details

Authors Samuel J Magorrian, Samuel J. Magorrian
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.08.2020
 
EAN 9783030257170
ISBN 978-3-0-3025717-0
No. of pages 87
Dimensions 156 mm x 7 mm x 235 mm
Illustrations XII, 87 p. 32 illus., 26 illus. in color.
Series Springer Theses
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Atomic physics, nuclear physics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.