Read more
This self-contained and extensively referenced text demonstrates the art of developing approximate quantum models of real nanodevices by describing the underlying theory behind their quantum mechanical operation. For use both in advanced courses and as a reference for researchers in physics, chemistry, electrical engineering, and materials science.
List of contents
1. Introduction; 2. Quantum-mechanical framework; 3. Linear response theory; 4. Dissipation and decoherence; 5. Quantum current flow; 6. Quantum tunneling; 7. Quantum noise.
About the author
Malin Premaratne is Vice President of the Academic Board of Monash University, Australia. He is a Fellow of the Optical Society of America and a Fellow of the Institute of Engineers, Australia. His Industrial experience includes consultancy roles for Cisco, Lucent Technologies, Ericsson, Siemens, VPISystems, Telcordia Technologies, Ciena, and Tellium. He is also a visiting researcher at the Jet Propulsion Laboratory at Caltech, the University of Oxford, and the University of Melbourne. He has served as Associate Editor for IEEE Photonics Technology Letters, IEEE Photonics Journal, and OSA Advances in Optics and Photonics Journal.Govind P. Agrawal is James C. Wyant Professor of Optics at the University of Rochester. He is a Fellow of the IEEE and the Optical Society of America, and a Life Fellow of the Optical Society of India. He has been awarded the IEEE Photonics Society Quantum Electronics Award, the Riker University Award for Excellence in Graduate Teaching, the Esther Hoffman Beller Medal, the Max Born Award of the Optical Society, and the Quantum Electronics Prize of the European Physical Society. He has also served as Editor-in-Chief for the OSA journal Advances in Optics and Photonics.
Summary
This self-contained and extensively referenced text demonstrates the art of developing approximate quantum models of real nanodevices by describing the underlying theory behind their quantum mechanical operation. For use both in advanced courses and as a reference for researchers in physics, chemistry, electrical engineering, and materials science.