Fr. 69.00

Geometry and Analysis of Metric Spaces via Weighted Partitions

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

The aim of these lecture notes is to propose a systematic framework for geometry and analysis on metric spaces. The central notion is a partition (an iterated decomposition) of a compact metric space. Via a partition, a compact metric space is associated with an infinite graph whose boundary is the original space. Metrics and measures on the space are then studied from an integrated point of view as weights of the partition. In the course of the text:

  1. It is shown that a weight corresponds to a metric if and only if the associated weighted graph is Gromov hyperbolic.
  2. Various relations between metrics and measures such as bilipschitz equivalence, quasisymmetry, Ahlfors regularity, and the volume doubling property are translated to relations between weights. In particular, it is shown that the volume doubling property between a metric and a measure corresponds to a quasisymmetry between two metrics in the language of weights.
  3. The Ahlfors regular conformal dimension of a compact metric space is characterized as the critical index of p-energies associated with the partition and the weight function corresponding to the metric.

 These notes should interest researchers and PhD students working in conformal geometry, analysis on metric spaces, and related areas.

List of contents

- Introduction and a Showcase. - Partitions, Weight Functions and Their Hyperbolicity. - Relations of Weight Functions. - Characterization of Ahlfors Regular Conformal Dimension.

About the author











Report

"The monograph is well-written and concerns a novel idea which has great potential to become a major concept in areas such as fractal geometry and dynamical systems theory. It is written at the level of graduate students and for researchers interested in the aforementioned areas." (Peter Massopust, zbMATH 1455.28001, 2021)

Product details

Authors Jun Kigami
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2020
 
EAN 9783030541538
ISBN 978-3-0-3054153-8
No. of pages 164
Dimensions 156 mm x 12 mm x 235 mm
Weight 272 g
Illustrations VIII, 164 p. 10 illus.
Series Lecture Notes in Mathematics
Subject Natural sciences, medicine, IT, technology > Mathematics > Geometry

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.