Fr. 103.00

Algebraic Structure of String Field Theory

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This book gives a modern presentation of modular operands and their role in string field theory. The authors aim to outline the arguments from the perspective of homotopy algebras and their operadic origin.
Part I reviews string field theory from the point of view of homotopy algebras, including A-infinity algebras, loop homotopy (quantum L-infinity) and IBL-infinity algebras governing its structure. Within this framework, the covariant construction of a string field theory naturally emerges as composition of two morphisms of particular odd modular operads. This part is intended primarily for researchers and graduate students who are interested in applications of higher algebraic structures to strings and quantum field theory.
Part II contains a comprehensive treatment of the mathematical background on operads and homotopy algebras in a broader context, which should appeal also to mathematicians who are not familiar with string theory.

List of contents

Relativistic Point Particle.- String Theory.- Open and closed strings.- Open-closed BV equation.- A- and L-algebras.- Homotopy involutive Lie bialgebras.- Operads.- Feynman transform of a modular operad.- Structures relevant to physics.

About the author










Martin Doubek graduated from the Faculty of Mathematics and Physics of the Charles University in Prague.  He wrote his PhD thesis under supervision of Martin Markl at the Mathematical Institute of the Czech Academy of Sciences, and defended it in 2011. The promising career of this talented young mathematician was terminated in 2016 by his tragic death in a traffic accident.


Branislav Jurc
o graduated from the Faculty of Nuclear Sciences and Physical Engineering of the Czech Technical University. He defended his PhD thesis, supervised by Jirí Tolar, in 1991. He was a Humboldt Fellow at TU in Clausthal and MPIM in Bonn. His postdoctoral experience also includes stays at CERN, CRM in Montreal and LMU in Munich.  He is currently an Associate Professor at the Faculty of Mathematics and Physics of the Charles University in Prague. His research focuses on applications of higher algebraic and geometric structures in theoretical and mathematical physics.

Martin Markl graduated from the Faculty of Mathematics and Physics of the Charles University in 1983 and defended his PhD thesis, written under supervision of Vojtech Bartík, in 1987.  He was influenced at the early stage of his research career by Jim Stasheff during his repeated visits at the University of North Carolina at Chapel Hill. He is currently a senior research fellow of the Mathematical Institute of the Czech Academy of Sciences in Prague. His research is focused on homological algebra, geometry, and applications to mathematical physics.




Ivo Sachs graduated in 1991 from the faculty of physics of the ETH in Zurich and defended his PhD in 1994 under the supervision of Andreas Wipf. In 2001 he became a lecturer at the School of Mathematics at Trinity College, Dublin and, later on, was awarded a professorship in theoretical physics at the Ludwing-Maximilians-University in Munich in 2003. His main achievements are in quantum field theory, the structure of black holes and string field theory.


Report

"The reader can find an interesting presentation of the theory of operads, which is used to introduce string field theory with the language of homotopy algebras. The book is aimed at being appealing both for mathematicians and physicists. ... This is an interesting and didactic book for students and researchers interested in the mathematical foundations of string field theory." ( Fabio Ferrari Ruffino, Mathematical Reviews, September, 2022)

Product details

Authors Marti Doubeck, Martin Doubeck, Marti Doubek, Martin Doubek, Branislav Jur¿o, Branisla Jurco, Branislav Jurco, Martin Markl, Martin et Markl, Martin et a Markl, Ivo Sachs
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.11.2020
 
EAN 9783030530549
ISBN 978-3-0-3053054-9
No. of pages 221
Dimensions 161 mm x 17 mm x 234 mm
Weight 368 g
Illustrations XI, 221 p. 49 illus., 3 illus. in color.
Series Lecture Notes in Physics
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Theoretical physics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.