Fr. 230.00

Kalman Filtering and Neural Networks

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Informationen zum Autor SIMON HAYKIN, PhD, is Professor of Electrical Engineering at the Communication Research Laboratory of McMaster University in Hamilton, Ontario, Canada. Klappentext State-of-the-art coverage of Kalman filter methods for the design of neural networks This self-contained book consists of seven chapters by expert contributors that discuss Kalman filtering as applied to the training and use of neural networks. Although the traditional approach to the subject is almost always linear, this book recognizes and deals with the fact that real problems are most often nonlinear. The first chapter offers an introductory treatment of Kalman filters with an emphasis on basic Kalman filter theory, Rauch-Tung-Striebel smoother, and the extended Kalman filter. Other chapters cover: * An algorithm for the training of feedforward and recurrent multilayered perceptrons, based on the decoupled extended Kalman filter (DEKF) * Applications of the DEKF learning algorithm to the study of image sequences and the dynamic reconstruction of chaotic processes * The dual estimation problem * Stochastic nonlinear dynamics: the expectation-maximization (EM) algorithm and the extended Kalman smoothing (EKS) algorithm * The unscented Kalman filter Each chapter, with the exception of the introduction, includes illustrative applications of the learning algorithms described here, some of which involve the use of simulated and real-life data. Kalman Filtering and Neural Networks serves as an expert resource for researchers in neural networks and nonlinear dynamical systems. Zusammenfassung Kalman filtering is a well-established topic in the field of control and signal processing and represents by far the most refined method for the design of neural networks. This book takes a nontraditional nonlinear approach and reflects the fact that most practical applications are nonlinear. Inhaltsverzeichnis Preface. Contributors. Kalman Filters (S. Haykin). Parameter-Based Kalman Filter Training: Theory and Implementaion (G. Puskorius and L. Feldkamp). Learning Shape and Motion from Image Sequences (G. Patel, et al.). Chaotic Dynamics (G. Patel and S. Haykin). Dual Extended Kalman Filter Methods (E. Wan and A. Nelson). Learning Nonlinear Dynamical System Using the Expectation-Maximization Algorithm (S. Roweis and Z. Ghahramani). The Unscencted Kalman Filter (E. Wan and R. van der Merwe). Index....

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.