Fr. 139.00

Regenerative Engineering and Developmental Biology - Principles and Applications

English · Paperback / Softback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

List of contents

Introduction. Overview of principles of regeneration and development. What cells can do. Cellular proliferation. Cell migration. Regulation of differentiation and dedifferentiation. Epigenetics and the regulation of dedifferentiation. Signals associated with injuries that initiate regeneration. Wound healing—Basic review. Role of nerves—Neuro-epithelial interactions in salamander regeneration. Role of nerves—Neuro-epithelial interactions in mammalian development and regeneration. Inflammation and the role of the immune response. Bioelectricity. Regulation by the microenvironment and cell physiology. How cells remake the pattern and restore the function. Cellular contribution to regeneration. Morphogenesis—how the cells make structure. The information in the system that controls morphogenesis—the information grid. Information encoded by morphogens and growth factor signaling. Cell-Cell signaling. Regulation of positional information by the ECM and the spatial/temporal regulation of growth factor signaling. How to engineer regeneration using principles of regeneration and developmental biology. Organoids—Engineering a tooth. Neural regeneration. Heart regeneration. Skin regeneration and fibrosis—Learning how to talk to fibroblasts.

About the author

David M. Gardiner is a professor in the Department of Developmental and Cell Biology at the University of California Irvine. He received his BA in Biology from Occidental College, his Ph.D. from the Scripps Institution of Oceanography at UCSD, and postdoctoral training at UC Davis. His research has been focused discovering the mechanisms regulating limb regeneration in salamanders. He pioneered the use of the axolotl (Ambystoma mexicanum) as a model system for studies of vertebrate regeneration, and developed the Accessory Limb Model as an assay for bioactive compounds that induce dedifferentiation, blastema formation and limb regeneration. This novel assay is the basis for ongoing studies to identify molecular pathways that regulate regeneration in humans. Professor Gardiner is a Fellow of the American Association for the Advancement of Science, a recipient of the Marcus Singer Medal for Excellence in Regeneration Research, and a recipient of the Frontiers in Stem Cell and Regeneration Biology Pioneer Award. He is an author on more than 100 articles, and has served on numerous peer review committees, journal editorial boards, and scientific advisory boards. At UCI he serves as the Associate Dean for Research and Academic Affairs for the Francisco J. Ayala School of Biological Sciences.

Summary

This cutting-edge comprehensive reference work details the technologies related to cell structure in the regeneration of tissue and organs.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.