Fr. 69.00

Learning with Recurrent Neural Networks

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

Folding networks, a generalisation of recurrent neural networks to tree structured inputs, are investigated as a mechanism to learn regularities on classical symbolic data, for example. The architecture, the training mechanism, and several applications in different areas are explained. Afterwards a theoretical foundation, proving that the approach is appropriate as a learning mechanism in principle, is presented: Their universal approximation ability is investigated - including several new results for standard recurrent neural networks such as explicit bounds on the required number of neurons and the super Turing capability of sigmoidal recurrent networks. The information theoretical learnability is examined - including several contribution to distribution dependent learnability, an answer to an open question posed by Vidyasagar, and a generalisation of the recent luckiness framework to function classes. Final ly, the complexity of training is considered - including new results on the loading problem for standard feedforward networks with an arbitrary multilayered architecture, a correlated number of neurons and training set size, a varying number of hidden neurons but fixed input dimension, or the sigmoidal activation function, respectively.

List of contents

Introduction, Recurrent and Folding Networks: Definitions, Training, Background, Applications.- Approximation Ability: Foundationa, Approximation in Probability, Approximation in the Maximum Norm, Discussions and Open Questions.- Learnability: The Learning Scenario, PAC Learnability, Bounds on the VC-dimension of Folding Networks, Consquences for Learnability, Lower Bounds for the LRAAM, Discussion and Open Questions.- Complexity: The Loading Problem, The Perceptron Case, The Sigmoidal Case, Discussion and Open Questions.- Conclusion.

Summary

Folding networks, a generalisation of recurrent neural networks to tree structured inputs, are investigated as a mechanism to learn regularities on classical symbolic data, for example.

Product details

Authors Barbara Hammer
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 02.03.2005
 
EAN 9781852333430
ISBN 978-1-85233-343-0
No. of pages 150
Weight 256 g
Illustrations 150 p.
Series Lecture Notes in Control and Information Sciences
Lecture Notes in Control and Information Sciences
Subject Natural sciences, medicine, IT, technology > IT, data processing > Data communication, networks

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.