Fr. 37.70

Elements de mécanique galiléenne : une approche géométrique

French · Paperback / Softback

Shipping usually within 4 to 7 working days

Description

Read more

Cet ouvrage a pour objectif de transposer le schéma de construction de la théorie de la relativité générale à la mécanique classique.
Le point essentiel développé consiste à travailler directement dans l'espace-temps mais avec un autre groupe de symétrie, celui de Galilée. La connexion linéaire associée à ce groupe est structurée en 2 composantes, la gravité classique et un nouvel objet appelé tournoiement. Elle permet d'énoncer l'équation du mouvement des particules matérielles et solides rigides sous une forme covariante et de donner une définition claire des référentiels inertiels.
Les groupes de Galilée et de Poincaré sont deux sous-groupes du groupe affine, d'où l'idée de dégager les éléments communs aux théories classique et relativiste en développant une mécanique affine, comme le suggère J.M. Souriau. Cette approche permet d'écrire d'une manière unifiée, les équations du mouvement d'une particule, d'un corps rigide, des structures minces et des milieux continus classiques ou généralisés.
Grâce à cette approche géométrique, une formulation covariante de la thermodynamique peut être construite en considérant l'espace-temps comme une sous-variété d'un espace de dimension 5. Dans ce formalisme, la production locale d'entropie, expression du second principe, est un invariant Galiléen.

Product details

Authors DE SAXCE GERY, Géry de Saxcé, Géry de Saxcé, Géry de (1955-....) Saxcé
Publisher Cépaduès
 
Languages French
Product format Paperback / Softback
Released 23.08.2019
 
EAN 9782364937284
ISBN 978-2-36493-728-4
No. of pages 146
Weight 309 g
Series Mécanique théorique
Subject Non-fiction book > Nature, technology

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.