Fr. 255.00

Lattice Point Identities and Shannon-Type Sampling

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

List of contents

Preface. About the Authors. Acknowledgment. 1.From Lattice Point to Shannon-Type Sampling Identities. 2.Obligations, Ingredients, Achievements, and Innovations. 3.Layout. 4.Euler/Poisson-Type Summation Formulas and Shannon-Type Sampling. 5.Preparatory Tools of Vector Analysis. 6.Preparatory Tools of the Theory of Special Functions. 7.Preparatory Tools of Lattice Point Theory. 8.Preparatory Tools of Fourier Analysis. 9.Euler–Green Function and Euler-Type Summation Formula. 10.Hardy–Landau-Type Lattice Point Identities (Constant Weight). 11.Hardy–Landau-Type Lattice Point Identities (General Weights). 12.Bandlimited Shannon-Type Sampling (Preparatory Results). 13.Lattice Ball Shannon-Type Sampling. 14.Gauss-Weierstrass Mean Euler-Type Summation Formulas and Shannon-Type Sampling. 15.From Gauss-Weierstrass to Ordinary Lattice Point Poisson–Type Summation. 16.Shannon-Type Sampling Based on Poisson-Type Summation Formulas. 17.Paley–Wiener Space Framework and Spline Approximation. 18.Poisson-Type Summation Formulas over Euclidean Spaces. 19.Shannon–Type Sampling Based on Poisson–Type Summation Formulas over Euclidean Spaces. 20.Trends, Progress, and Perspectives. Bibliography. Index.

About the author

Willi Freeden, M. Zuhair Nashed

Summary

Lattice Point Identities and Shannon-Type Sampling demonstrates that significant roots of many recent facets of Shannon's sampling theorem for multivariate signals rest on basic number-theoretic results.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.