Fr. 179.00

Pattern Classification - Neuro-fuzzy Methods and Their Comparison

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

Neural networks have a learning capability but analysis of a trained network is difficult. On the other hand, extraction of fuzzy rules is difficult but once they have been extracted, it is relatively easy to analyze the fuzzy system. This book solves the above problems by developing new learning paradigms and architectures for neural networks and fuzzy systems.
The book consists of two parts: Pattern Classification and Function Approximation. In the first part, based on the synthesis principle of the neural-network classifier: A new learning paradigm is discussed and classification performance and training time of the new paradigm for several real-world data sets are compared with those of the widely-used back-propagation algorithm; Fuzzy classifiers of different architectures based on fuzzy rules can be defined with hyperbox, polyhedral, or ellipsoidal regions. The book discusses the unified approach for training these fuzzy classifiers; The performance of the newly-developed fuzzy classifiers and the conventional classifiers such as nearest-neighbor classifiers and support vector machines are evaluated using several real-world data sets and their advantages and disadvantages are clarified.
In the second part: Function approximation is discussed extending the discussions in the first part; Performance of the function approximators is compared.
This book is aimed primarily at researchers and practitioners in the field of artificial intelligence and neural networks.

List of contents

I. Pattern Classification.- 1. Introduction.- 2. Multilayer Neural Network Classifiers.- 3. Support Vector Machines.- 4. Membership Functions.- 5. Static Fuzzy Rule Generation.- 6. Clustering.- 7. Tuning of Membership Functions.- 8. Robust Pattern Classification.- 9. Dynamic Fuzzy Rule Generation.- 10. Comparison of Classifier Performance.- 11. Optimizing Features.- 12. Generation of Training and Test Data Sets.- II. Function Approximation.- 13. Introduction.- 14. Fuzzy Rule Representation and Inference.- 15. Fuzzy Rule Generation.- 16. Robust Function Approximation.- III. Appendices.- A. Conventional Classifiers.- A.1 Bayesian Classifiers.- A.2 Nearest Neighbor Classifiers.- A.2.1 Classifier Architecture.- A.2.2 Performance Evaluation.- B. Matrices.- B.1 Matrix Properties.- B.2 Least-squares Method and Singular Value Decomposition.- B.3 Covariance Matrix.- References.

Summary

Neural networks have a learning capability but analysis of a trained network is difficult. On the other hand, extraction of fuzzy rules is difficult but once they have been extracted, it is relatively easy to analyze the fuzzy system. This book solves the above problems by developing new learning paradigms and architectures for neural networks and fuzzy systems.
The book consists of two parts: Pattern Classification and Function Approximation. In the first part, based on the synthesis principle of the neural-network classifier: A new learning paradigm is discussed and classification performance and training time of the new paradigm for several real-world data sets are compared with those of the widely-used back-propagation algorithm; Fuzzy classifiers of different architectures based on fuzzy rules can be defined with hyperbox, polyhedral, or ellipsoidal regions. The book discusses the unified approach for training these fuzzy classifiers; The performance of the newly-developed fuzzy classifiers and the conventional classifiers such as nearest-neighbor classifiers and support vector machines are evaluated using several real-world data sets and their advantages and disadvantages are clarified.
In the second part: Function approximation is discussed extending the discussions in the first part; Performance of the function approximators is compared.
This book is aimed primarily at researchers and practitioners in the field of artificial intelligence and neural networks.

Product details

Authors Shigeo Abe
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 24.01.2001
 
EAN 9781852333522
ISBN 978-1-85233-352-2
No. of pages 327
Weight 666 g
Illustrations XIX, 327 p.
Subjects Natural sciences, medicine, IT, technology > IT, data processing > IT

B, Artificial Intelligence, computer science, complexity, pattern recognition, Automated Pattern Recognition, Maths for engineers, Cybernetics & systems theory, Applied Dynamical Systems, Computational complexity, Cybernetics and systems theory, Pattern recognition systems

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.