Fr. 69.00

Joint Training for Neural Machine Translation

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more


This book presents four approaches to jointly training bidirectional neural machine translation (NMT) models. First, in order to improve the accuracy of the attention mechanism, it proposes an agreement-based joint training approach to help the two complementary models agree on word alignment matrices for the same training data. Second, it presents a semi-supervised approach that uses an autoencoder to reconstruct monolingual corpora, so as to incorporate these corpora into neural machine translation. It then introduces a joint training algorithm for pivot-based neural machine translation, which can be used to mitigate the data scarcity problem. Lastly it describes an end-to-end bidirectional NMT model to connect the source-to-target and target-to-source translation models, allowing the interaction of parameters between these two directional models.

List of contents

1. Introduction.- 2. Neural Machine Translation.- 3. Agreement-based Joint Training for Bidirectional Attention-based Neural Machine Translation.- 4. Semi-supervised Learning for Neural Machine Translation.- 5. Joint Training for Pivot-based Neural Machine Translation.- 6. Joint Modeling for Bidirectional Neural Machine Translation with Contrastive Learning.- 7. Related Work.- 8. Conclusion.

About the author

Yong Cheng is currently a software engineer engaged in research at Google. Before joining Google, he worked as a senior researcher at Tencent AI Lab. He obtained his Ph.D. from the Institute for Interdisciplinary Information Sciences (IIIS) at Tsinghua University in 2017. His research interests focus on neural machine translation and natural language processing.

Summary


This book presents four approaches to jointly training bidirectional neural machine translation (NMT) models. First, in order to improve the accuracy of the attention mechanism, it proposes an agreement-based joint training approach to help the two complementary models agree on word alignment matrices for the same training data. Second, it presents a semi-supervised approach that uses an autoencoder to reconstruct monolingual corpora, so as to incorporate these corpora into neural machine translation. It then introduces a joint training algorithm for pivot-based neural machine translation, which can be used to mitigate the data scarcity problem. Lastly it describes an end-to-end bidirectional NMT model to connect the source-to-target and target-to-source translation models, allowing the interaction of parameters between these two directional models.

Product details

Authors Yong Cheng
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 30.11.2019
 
EAN 9789813297470
ISBN 978-981-3297-47-0
No. of pages 78
Dimensions 155 mm x 244 mm x 11 mm
Weight 265 g
Illustrations XIII, 78 p. 23 illus., 9 illus. in color.
Series Springer Theses
Subjects Natural sciences, medicine, IT, technology > IT, data processing > IT

C, Artificial Intelligence, computer science, Natural Language Processing (NLP), Natural language processing (Computer science), Computer logic, Logic in AI

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.