Fr. 134.00

ULF Waves' Interaction with Cold and Thermal Particles in the Inner Magnetosphere

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

This thesis focuses on ULF (Ultra-low-frequency) waves' interaction with plasmasphere particles and ring current ions in the inner magnetosphere. It first reports and reveals mutual effect between ULF waves and plasmasphere using Van Allen Probes data. The differences and similarities of different ring current ions interacting with ULF waves are extensively explored using Cluster data, which provides a potential explanation for O+-dominated ring current during the magnetic storms. Furthermore, this thesis finds a method to study the phase relationship between ULF waves and drift-bounce resonant particles, and proposes that the phase relationship can be used to diagnose the parallel structure of standing wave electric field and energy transfer directions between waves and particles.  The findings in this thesis can significantly promote our understanding of ULF waves' role in the dynamics of inner magnetosphere. 

List of contents

Background and Motivation.- ULF Waves' affect on the Dynamics of Plasmasphere.- Interaction between ULF Waves and Different Ring Current Ions.- Phase Difference between ULF Waves and Drift-bounce Resonant Particles.- Substorm-related ULF Waves and Their Interaction with Ions.- Summary.

About the author

Dr. Jie Ren obtained his PhD in Geophysics from Peking University in 2018. His research interests lie in space physics, magnetosphere physics and space plasma physics. He has published several high quality articles in journals such as Journal of Geophysical Research: Space Physics. He was awarded with Award for Excellent Scientific Research, Exceptional Award for Academic Innovation, Excellent Student Award, and Excellent Graduate Award by Peking University, China National Scholarship by the Ministry of Education, and the Excellent Graduate Award of Beijing by the government. After graduation, he got Peking University Boya Postdoctoral Fellowship and National Postdoctoral Fellowship for Innovative Talents. 

Summary

This thesis focuses on ULF (Ultra-low-frequency) waves' interaction with plasmasphere particles and ring current ions in the inner magnetosphere. It first reports and reveals mutual effect between ULF waves and plasmasphere using Van Allen Probes data. The differences and similarities of different ring current ions interacting with ULF waves are extensively explored using Cluster data, which provides a potential explanation for O+-dominated ring current during the magnetic storms. Furthermore, this thesis finds a method to study the phase relationship between ULF waves and drift-bounce resonant particles, and proposes that the phase relationship can be used to diagnose the parallel structure of standing wave electric field and energy transfer directions between waves and particles.  The findings in this thesis can significantly promote our understanding of ULF waves' role in the dynamics of inner magnetosphere. 

Product details

Authors Jie Ren
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.01.2019
 
EAN 9789813293779
ISBN 978-981-3293-77-9
No. of pages 106
Dimensions 160 mm x 239 mm x 14 mm
Weight 309 g
Illustrations XXI, 106 p. 61 illus., 52 illus. in color.
Series Springer Theses
Springer Theses
Subjects Natural sciences, medicine, IT, technology > Physics, astronomy > Astronomy

B, Astrophysics, Physics and Astronomy, Astronomy, Cosmology and Space Sciences, Astrophysics and Astroparticles, Solar system: the Sun & planets, Planetary Sciences, Planetary Science, Space Physics, Space sciences, Plasma Physics, Plasma (Ionized gases)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.