Fr. 109.00

Porous Media - Applications in Biological Systems and Biotechnology

English · Paperback / Softback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

List of contents

A General Set of Bioheat Equations Based on the Volume Averaging Theory. Mathematical Models of Mass Transfer in Tissue for Molecular Medicine with Reversible Electroporation. Hydrodynamics in Porous Media with Applications to Tissue Engineering. Biomedical Implications of the Porosity of Microbial Biofilms. Influence of Biofilms on Porous Media Hydrodynamics. Using Porous Media Theory to Determine the Coil Volume Needed to Arrest Flow in Brain Aneurysms. Lagrangian Particle Methods for Biological Systems. Passive Mass Transport Processes in Cellular Membranes and Their Biophysical Implications. Skin Electroporation: Modeling Perspectives. Application of Porous Media Theories in Marine Biological Modeling. The Transport of Insulin-Like Growth Factor through Cartilage. Biotechnological and Biomedical Applications of Magnetically Stabilized and Fluidized Beds. In Situ Characterizations of Porous Media for Applications in Biofuel Cells: Issues and Challenges. Spatial Pattern Formation of Motile Microorganisms: From Gravitactic Bioconvection to Protozoan Culture Dynamics.

Summary

Presenting state-of-the-art research advancements, Porous Media: Applications in Biological Systems and Biotechnology explores innovative approaches to effectively apply existing porous media technologies to biomedical applications. In each peer-reviewed chapter, world-class scientists and engineers collaborate to address significant problems and discuss exciting research in biological systems.

The book begins with discussions on bioheat transfer equations for blood flows and surrounding biological tissue, the concept of electroporation, hydrodynamic modeling of tissue-engineered material, and the resistance of microbial biofilms to common modalities of antibiotic treatments. It examines how biofilms influence porous media hydrodynamics, describes the modeling of flow changes in cerebral aneurysms, and highlights recent advances in Lagrangian particles methods. The text also covers passive mass transport processes in cellular membranes and their biophysical implications, the modeling and treatment of mass transport through skin, the use of porous media in marine microbiology, the transport of large biological molecules in deforming tissues, and applications of magnetic stabilized beds for protein purification and adsorption, antibody removal, and more. The final chapters present potential in situ characterization techniques for studying porous media and conductive membranes and explain the development of bioconvection patterns generated by populations of gravitactic microorganisms in porous media.

Using a common nomenclature throughout and with contributions from top experts, this cohesive book illustrates the role of porous media in addressing some of the most challenging issues in biomedical engineering and biotechnology. The book contains sophisticated porous media models that can be used to improve the accuracy of modeling a variety of biological processes.

Product details

Authors Kambiz Vafai, Kambiz (University of California Vafai
Assisted by Kambiz Vafai (Editor), Vafai Kambiz (Editor)
Publisher Taylor & Francis Ltd.
 
Languages English
Product format Paperback / Softback
Released 31.08.2019
 
EAN 9780367383671
ISBN 978-0-367-38367-1
No. of pages 632
Subjects Natural sciences, medicine, IT, technology > Medicine > Pharmacy

SCIENCE / Biotechnology, MEDICAL / Biotechnology, biotechnology, Materials science, Biomedical engineering, TECHNOLOGY & ENGINEERING / Materials Science / General

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.