Fr. 70.00

Inpainting and Denoising Challenges

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

The problem of dealing with missing or incomplete data in machine learning and computer vision arises in many applications. Recent strategies make use of generative models to impute missing or corrupted data. Advances in computer vision using deep generative models have found applications in image/video processing, such as denoising, restoration, super-resolution, or inpainting. 
Inpainting and Denoising Challenges comprises recent efforts dealing with image and video inpainting tasks. This includes winning solutions to the ChaLearn Looking at People inpainting and denoising challenges: human pose recovery, video de-captioning and fingerprint restoration. 

This volume starts with a wide review on image denoising, retracing and comparing various methods from the pioneer signal processing methods, to machine learning approaches with sparse and low-rank models, and recent deep learning architectures with autoencoders and variants. The following chapterspresent results from the Challenge, including three competition tasks at WCCI and ECML 2018. The top best approaches submitted by participants are described, showing interesting contributions and innovating methods. The last two chapters propose novel contributions and highlight new applications that benefit from image/video inpainting. 

List of contents

1. A Brief Review of Image Denoising Algorithms and Beyond.- 2. ChaLearn Looking at People: Inpainting and Denoising Challenges.- 3. U-Finger: Multi-Scale Dilated Convolutional Network for Fingerprint Image Denoising and Inpainting.- 4. FPD-M-net: Fingerprint Image Denoising and Inpainting Using M-Net Based Convolutional Neural Networks.- 5. Iterative Application of Autoencoders for Video Inpainting and Fingerprint Denoising.- 6. Video DeCaptioning using U-Net with Stacked Dilated Convolutional Layers.- 7. Joint Caption Detection and Inpainting using Generative Network.- 8. Generative Image Inpainting for Person Pose Generation.- 9. Person Inpainting with Generative Adversarial Networks.- 10. Road Layout Understanding by Generative Adversarial Inpainting.- 11. Photo-realistic and Robust Inpainting of Faces using Refinement GANs.

Summary

The problem of dealing with missing or incomplete data in machine learning and computer vision arises in many applications. Recent strategies make use of generative models to impute missing or corrupted data. Advances in computer vision using deep generative models have found applications in image/video processing, such as denoising, restoration, super-resolution, or inpainting. 
Inpainting and Denoising Challenges comprises recent efforts dealing with image and video inpainting tasks. This includes winning solutions to the ChaLearn Looking at People inpainting and denoising challenges: human pose recovery, video de-captioning and fingerprint restoration. 

This volume starts with a wide review on image denoising, retracing and comparing various methods from the pioneer signal processing methods, to machine learning approaches with sparse and low-rank models, and recent deep learning architectures with autoencoders and variants. The following chapterspresent results from the Challenge, including three competition tasks at WCCI and ECML 2018. The top best approaches submitted by participants are described, showing interesting contributions and innovating methods. The last two chapters propose novel contributions and highlight new applications that benefit from image/video inpainting. 

Product details

Assisted by Stephan Ayache (Editor), Stephane Ayache (Editor), Xavier Baró (Editor), Sergio Escalera (Editor), Umut Güçlü (Editor), Meysam Madadi (Editor), Jun Wan (Editor), Jun Wan et al (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.01.2019
 
EAN 9783030256135
ISBN 978-3-0-3025613-5
No. of pages 144
Dimensions 160 mm x 236 mm x 15 mm
Weight 378 g
Illustrations VIII, 144 p. 65 illus., 56 illus. in color.
Series The Springer Series on Challenges in Machine Learning
Subjects Natural sciences, medicine, IT, technology > IT, data processing > IT

C, Artificial Intelligence, Mustererkennung, Maschinelles Sehen, Bildverstehen, computer science, Computer Vision, Image Processing and Computer Vision, pattern recognition, Automated Pattern Recognition, Optical data processing, Image processing, denoising

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.