Fr. 150.00

Spectral Analysis for Univariate Time Series

English · Hardback

Shipping usually within 3 to 5 weeks

Description

Read more

List of contents










1. Introduction to spectral analysis; 2. Stationary stochastic processes; 3. Deterministic spectral analysis; 4. Foundations for stochastic spectral analysis; 5. Linear time-invariant filters; 6. Periodogram and other direct spectral estimators; 7. Lag window estimators; 8. Combining direct spectral estimators; 9. Parametric spectral estimators; 10. Harmonic analysis; 11. Simulation of time series.

About the author

Donald B. Percival is the author of 75 publications in refereed journals on a variety of topics, including analysis of environmental time series, characterization of instability of atomic clocks and forecasting inundation of coastal communities due to trans-oceanic tsunamis. He is the co-author (with Andrew Walden) of Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques (Cambridge, 1993) and Wavelet Methods for Time Series Analysis (Cambridge, 2000). He has taught graduate-level courses on time series analysis, spectral analysis and wavelets for over thirty years at the University of Washington.Andrew T. Walden has authored 100 refereed papers in scientific areas including statistics, signal processing, geophysics, astrophysics and neuroscience, with an emphasis on spectral analysis and time series methodology. He worked in geophysical exploration research before joining Imperial College London. He is co-author (with Donald B. Percival) of Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques (Cambridge,1993) and Wavelet Methods for Time Series Analysis (Cambridge, 2000). He has taught many courses including time series, spectral analysis, geophysical data analysis, applied probability and graphical modelling, primarily at Imperial College London, and also at the University of Washington.

Summary

Spectral analysis is an important technique for interpreting time series data. This book uses the R language and real world examples to show data analysts interested in time series in the environmental, engineering and physical sciences how to bridge the gap between the statistical theory behind spectral analysis and its application to actual data.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.