Fr. 124.00

Birational Geometry of Hypersurfaces - Gargnano del Garda, Italy, 2018

English, French · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more


Originating from the School on Birational Geometry of Hypersurfaces, this volume focuses on the notion of (stable) rationality of projective varieties and, more specifically, hypersurfaces in projective spaces, and provides a large number of open questions, techniques and spectacular results.

The aim of the school was to shed light on this vast area of research by concentrating on two main aspects: (1) Approaches focusing on (stable) rationality using deformation theory and Chow-theoretic tools like decomposition of the diagonal; (2) The connection between K3 surfaces, hyperkähler geometry and cubic fourfolds, which has both a Hodge-theoretic and a homological side.

Featuring the beautiful lectures given at the school by Jean-Louis Colliot-Thélène, Daniel Huybrechts, Emanuele Macrì, and Claire Voisin, the volume also includes additional notes by János Kollár and an appendix by Andreas Hochenegger.

List of contents

- Part I Birational Invariants and (Stable) Rationality . - Birational Invariants and Decomposition of the Diagonal. - Non rationalité stable sur les corps quelconques. - Introduction to work of Hassett-Pirutka-Tschinkel and Schreieder. - Part II Hypersurfaces. - The Rigidity Theorem of Fano-Segre-Iskovskikh-Manin-Pukhlikov-Corti-Cheltsov-deFernex-Ein-Mustata-Zhuang. - Hodge Theory of Cubic Fourfolds, Their Fano Varieties, and Associated K3 Categories. - Lectures on Non-commutative K3 Surfaces, Bridgeland Stability, and Moduli Spaces. - Appendix: Introduction to Derived Categories of Coherent Sheaves.

Summary

Originating from the School on Birational Geometry of Hypersurfaces, this volume focuses on the notion of (stable) rationality of projective varieties and, more specifically, hypersurfaces in projective spaces, and provides a large number of open questions, techniques and spectacular results.

The aim of the school was to shed light on this vast area of research by concentrating on two main aspects: (1) Approaches focusing on (stable) rationality using deformation theory and Chow-theoretic tools like decomposition of the diagonal; (2) The connection between K3 surfaces, hyperkähler geometry and cubic fourfolds, which has both a Hodge-theoretic and a homological side.

Featuring the beautiful lectures given at the school by Jean-Louis Colliot-Thélène, Daniel Huybrechts, Emanuele Macrì, and Claire Voisin, the volume also includes additional notes by János Kollár and an appendix by Andreas Hochenegger.

 

Product details

Assisted by Andreas Hochenegger (Editor), Manfre Lehn (Editor), Manfred Lehn (Editor), Paolo Stellari (Editor)
Publisher Springer, Berlin
 
Languages English, French
Product format Paperback / Softback
Released 01.01.2019
 
EAN 9783030186371
ISBN 978-3-0-3018637-1
No. of pages 297
Dimensions 156 mm x 17 mm x 236 mm
Weight 470 g
Illustrations IX, 297 p. 36 illus.
Series Lecture Notes of the Unione Matematica Italiana
Subjects Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Algebra, B, Mathematics and Statistics, Algebraic Geometry, Mathematical foundations, Category theory (Mathematics), Category Theory, Homological Algebra, Homological algebra

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.