Fr. 50.90

Groupes algébriques semi-simples en dimension cohomologique 2 - Semisimple algebraic groups in cohomological dimension 2

French · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

La théorie des groupes algébriques sur un corps arbitraire est l'une des branches les plus merveilleuses des mathématiques modernes. Cette monographie porte sur les groupes algébriques semi-simples définis sur un corps k de dimension cohomologique séparable <=2 et la cohomologie galoisienne d'iceux. La question ouverte la plus importante est la conjecture II de Serre (1962) qui prédit l'annulation de la cohomologie galoisienne d'un groupe semi-simple simplement connexe.
Utilisant principalement des techniques de groupes algébriques, on couvre tous les cas connus de la conjecture: les cas classiques (dus à Bayer-Fluckiger and Parimala) ainsi que les avancées sur les cas exceptionnels restants (par exemple de type E8). Ceci s'applique à la classification des groupes semi-simples.

The theory of algebraic groups over arbitrary fields is one of the most beautiful branches of modern mathematics. This monograph deals with semisimple algebraic groups over a general field k of separable cohomological dimension ^ to Bayer-Fluckiger and Parimala), and some perspectives are given on the remaining exceptional cases (e.g., G of type E8). Applications to the classification of semisimple k-groups are presented.

List of contents

Préface.- 1 Généralités.- 2 Groupes réductifs.- 3 Sous-groupes des groupes algébriques, déploiement.- 4 Dimension cohomologique séparable.- 5 Tores algébriques, Conjecture I et groupes de normes.- 6 Conjecture II, le cas quasi-déployé.- 7 Groupes classiques.- 8 Groupes exceptionnels.- 9 Applications.- Appendice : Indices de Tits.- Bibliographie.- Index.

Summary

La théorie des groupes algébriques sur un corps arbitraire est l’une des branches les plus merveilleuses des mathématiques modernes. Cette monographie porte sur les groupes algébriques semi-simples définis sur un corps k de dimension cohomologique séparable ≤2  et la cohomologie galoisienne d’iceux. La question ouverte la plus importante est la conjecture II de Serre (1962) qui prédit l’annulation de la cohomologie galoisienne d’un groupe semi-simple simplement connexe.
Utilisant principalement des techniques de groupes algébriques, on couvre tous les cas connus de la conjecture: les cas classiques (dus à Bayer-Fluckiger and Parimala) ainsi que les avancées sur les cas exceptionnels restants (par exemple de type E8). Ceci s’applique à la classification des groupes semi-simples.

The theory of algebraic groups over arbitrary fields is one of the most beautiful branches of modern mathematics. This monograph deals with semisimple algebraic groups over a generalfield k of separable cohomological dimension ^ to Bayer-Fluckiger and Parimala), and some perspectives are given on the remaining exceptional cases (e.g., G of type E8). Applications to the classification of semisimple k-groups are presented.

Product details

Authors Philippe Gille
Publisher Springer, Berlin
 
Languages French
Product format Paperback / Softback
Released 01.01.2019
 
EAN 9783030172718
ISBN 978-3-0-3017271-8
No. of pages 169
Dimensions 154 mm x 12 mm x 233 mm
Weight 301 g
Illustrations XXII, 169 p. Avec With a comprehensive introduction in English.
Series Lecture Notes in Mathematics
Subjects Natural sciences, medicine, IT, technology > Mathematics > Arithmetic, algebra

Algebra, C, Group Theory, Mathematics and Statistics, Group Theory and Generalizations, General Algebraic Systems

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.