Read more
Presents interplays between numerical approximation and statistical inference as a pathway to simple solutions to fundamental problems.
List of contents
1. Introduction; 2. Sobolev space basics; 3. Optimal recovery splines; 4. Numerical homogenization; 5. Operator adapted wavelets; 6. Fast solvers; 7. Gaussian fields; 8. Optimal recovery games on $\mathcal{H}^{s}_{0}(\Omega)$; 9. Gamblets; 10. Hierarchical games; 11. Banach space basics; 12. Optimal recovery splines; 13. Gamblets; 14. Bounded condition numbers; 15. Exponential decay; 16. Fast Gamblet Transform; 17. Gaussian measures, cylinder measures, and fields on $\mathcal{B}$; 18. Recovery games on $\mathcal{B}$; 19. Game theoretic interpretation of Gamblets; 20. Survey of statistical numerical approximation; 21. Positive definite matrices; 22. Non-symmetric operators; 23. Time dependent operators; 24. Dense kernel matrices; 25. Fundamental concepts.
About the author
Houman Owhadi is Professor of Applied and Computational Mathematics and Control and Dynamical Systems in the Computing and Mathematical Sciences department at the California Institute of Technology. He is one of the main editors of the Handbook of Uncertainty Quantification (2016). His research interests concern the exploration of interplays between numerical approximation, statistical inference and learning from a game theoretic perspective, especially the facilitation/automation possibilities emerging from these interplays.Clint Scovel is a Research Associate in the Computing and Mathematical Sciences department at the California Institute of Technology, after a twenty-six-year career at Los Alamos National Laboratory, including foundational research in symplectic algorithms and machine learning. He received his Ph.D. in mathematics from the Courant Institute of Mathematics at New York University in 1983. He currently works on uncertainty quantification, Bayesian methods, incorporating computational complexity in Wald's statistical decision theory, operator adapted wavelets and fast solvers.
Summary
This book, meant for graduate students and researchers, explores the connections between numerical approximation and statistical inference from a game and decision theoretic perspective, and illustrates these interplays by addressing problems related to numerical homogenization, operator adapted wavelets, and fast solvers.