Fr. 158.00

Evolutionary Approach to Machine Learning and Deep Neural Networks - Neuro-Evolution and Gene Regulatory Networks

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gröbner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields.Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution.
The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot.

List of contents

Introduction.- Meta-heuristics, machine learning and deep learning methods.- Evolutionary approach to deep learning.- Machine learning approach to evolutionary computation.- Evolutionary approach to gene regulatory networks.- Conclusion.

About the author

Hitoshi Iba received his Ph.D. degree from The University of Tokyo, Japan, in 1990. From 1990 to 1998, he was with the Electro Technical Laboratory (ETL) in Ibaraki, Japan. He has been with The University of Tokyo since 1998 and is currently a professor at the Graduate School of Information and Communication Engineering there. His research interests include evolutionary computation, genetic programming, bioinformatics, foundations of artificial intelligence, artificial life, complex systems, and robotics.

Summary

This book provides theoretical and practical knowledge about a methodology for evolutionary algorithm-based search strategy with the integration of several machine learning and deep learning techniques. These include convolutional neural networks, Gröbner bases, relevance vector machines, transfer learning, bagging and boosting methods, clustering techniques (affinity propagation), and belief networks, among others. The development of such tools contributes to better optimizing methodologies. Beginning with the essentials of evolutionary algorithms and covering interdisciplinary research topics, the contents of this book are valuable for different classes of readers: novice, intermediate, and also expert readers from related fields.Following the chapters on introduction and basic methods, Chapter 3 details a new research direction, i.e., neuro-evolution, an evolutionary method for the generation of deep neural networks, and also describes how evolutionary methods are extended in combination with machine learning techniques. Chapter 4 includes novel methods such as particle swarm optimization based on affinity propagation (PSOAP), and transfer learning for differential evolution (TRADE), another machine learning approach for extending differential evolution.

The last chapter is dedicated to the state of the art in gene regulatory network (GRN) research as one of the most interesting and active research fields. The author describes an evolving reaction network, which expands the neuro-evolution methodology to produce a type of genetic network suitable for biochemical systems and has succeeded in designing genetic circuits in synthetic biology. The author also presents real-world GRN application to several artificial intelligent tasks, proposing a framework of motion generation by GRNs (MONGERN), which evolves GRNs to operate a real humanoid robot.

Additional text

“The main aim of this work is to present and elaborate the bridge between theoretical approaches and the concrete, real-life challenges in genetics. … the author's efforts to present these concepts in an accessible manner brings the edge of research within the reach of a wider audience. The examples and the algebraic formalism throughout, augmented by the relevant references … open this field to undergraduates, postgraduates and established researchers alike and provide a solid starting point to more progressive research.” (Irina Ioana Mohorianu, zbMATH 1394.68003, 2018)

Report

"The main aim of this work is to present and elaborate the bridge between theoretical approaches and the concrete, real-life challenges in genetics. ... the author's efforts to present these concepts in an accessible manner brings the edge of research within the reach of a wider audience. The examples and the algebraic formalism throughout, augmented by the relevant references ... open this field to undergraduates, postgraduates and established researchers alike and provide a solid starting point to more progressive research." (Irina Ioana Mohorianu, zbMATH 1394.68003, 2018)

Product details

Authors Hitoshi Iba
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 31.07.2019
 
EAN 9789811343582
ISBN 978-981-1343-58-2
No. of pages 245
Dimensions 156 mm x 237 mm x 15 mm
Weight 403 g
Illustrations XIII, 245 p. 127 illus., 84 illus. in color.
Subjects Natural sciences, medicine, IT, technology > IT, data processing > IT

B, Artificial Intelligence, computer science, molecular biology, bioinformatics, Information technology: general issues, Computational Intelligence, Maths for scientists, Biomathematics, Mathematical and Computational Biology

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.