Fr. 90.00

Notes on the Stationary p-Laplace Equation

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more


This book in the BCAM SpringerBriefs series is a treatise on the p-Laplace equation. It is based on lectures by the author that were originally delivered at the Summer School in Jyväskylä, Finland, in August 2005 and have since been updated and extended to cover various new topics, including viscosity solutions and asymptotic mean values. The p-Laplace equation is a far-reaching generalization of the ordinary Laplace equation, but it is non-linear and degenerate (p>2) or singular (p<2). Thus it requires advanced methods. Many fascinating properties of the Laplace equation are, in some modified version, extended to the p-Laplace equation. Nowadays the theory is almost complete, although some challenging problems remain open.

List of contents

1 Introduction.- 2 The Dirichlet problem and weak solutions.- 3 Regularity theory.- 4 Differentiability.- 5 On p-superharmonic functions.- 6 Perron's method.- 7 Some remarks in the complex plane.- 8 The infinity Laplacian.- 9 Viscosity solutions.- 10 Asymptotic mean values.- 11 Some open problems.- 12 Inequalities for vectors.

About the author

Peter Lindqvist is Professor of Mathematics in the Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway. His research focus is analysis, including in particular partial differential equations and “non-linear potential theory”.

Summary

This book in the BCAM SpringerBriefs series is a treatise on the p-Laplace equation. It is based on lectures by the author that were originally delivered at the Summer School in Jyväskylä, Finland, in August 2005 and have since been updated and extended to cover various new topics, including viscosity solutions and asymptotic mean values. The p-Laplace equation is a far-reaching generalization of the ordinary Laplace equation, but it is non-linear and degenerate (p>2) or singular (p<2). Thus it requires advanced methods. Many fascinating properties of the Laplace equation are, in some modified version, extended to the p-Laplace equation. Nowadays the theory is almost complete, although some challenging problems remain open.

Additional text

“The book will provide the reader with an up-to-date overview on the p-Laplace equation and will uncover ideas behind some concepts and involved results in the field.” (Vladimir Bobkov, Mathematical Reviews, December, 2019)
“The book is a very useful contribution to the growing literature on this circle of ideas. I wholeheartedly recommend this book both as a textbook, as well as for independent study.” (Vicenţiu D. Rădulescu, zbMATH 1421.35002, 2019)

Report

"The book will provide the reader with an up-to-date overview on the p-Laplace equation and will uncover ideas behind some concepts and involved results in the field." (Vladimir Bobkov, Mathematical Reviews, December, 2019)
"The book is a very useful contribution to the growing literature on this circle of ideas. I wholeheartedly recommend this book both as a textbook, as well as for independent study." (Vicentiu D. Radulescu, zbMATH 1421.35002, 2019)

Product details

Authors Peter Lindqvist
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.06.2019
 
EAN 9783030145002
ISBN 978-3-0-3014500-2
No. of pages 104
Dimensions 155 mm x 6 mm x 235 mm
Weight 196 g
Illustrations XI, 104 p. 2 illus., 1 illus. in color.
Series SpringerBriefs in Mathematics
SpringerBriefs in Mathematics
Subject Natural sciences, medicine, IT, technology > Mathematics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.