Fr. 188.00

Bayesian Networks for Reliability Engineering

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more

 This book presents a bibliographical review of the use of Bayesian networks in reliability over the last decade. Bayesian network (BN) is considered to be one of the most powerful models in probabilistic knowledge representation and inference, and it is increasingly used in the field of reliability. After focusing on the engineering systems, the book subsequently discusses twelve important issues in the BN-based reliability methodologies, such as BN structure modeling, BN parameter modeling, BN inference, validation, and verification. As such, it is a valuable resource for researchers and practitioners in the field of reliability engineering.

List of contents


Bayesian networks for reliability.- Using Bayesian networks in reliability evaluation for subsea blowout preventer control system.- Risk analysis of subsea blowout preventer by mapping GO models into Bayesian networks.- Reliability evaluation of auxiliary feedwater system by mapping GO-FLOW models into Bayesian networks.- Dynamic Bayesian networks based performance evaluation of subsea blowout preventers in presence of imperfect repair.- Performance evaluation of subsea BOP control systems using dynamic Bayesian networks with imperfect repair and preventive maintenance.- Dynamic Bayesian network modelling of reliability of subsea blowout preventer stack in presence of common cause failures.- A framework for the reliability evaluation of grid-connected photovoltaic systems in the presence of intermittent faults.- Real-time reliability evaluation methodology based on dynamic Bayesian networks.- Reliability evaluation methodology of complex systems based on dynamic object-oriented Bayesian networks.- Bayesian network-based risk analysis methodology, a case of atmospheric and vacuum distillation unit.- A multiphase dynamic Bayesian networks methodology for the determination of safety integrity levels.- Availability-based engineering resilience metric and its corresponding evaluation methodology.

About the author

Baoping Cai is an associate professor at the China University of Petroleum (East China), a visiting researcher of the "Hong Kong Scholar" program at the City University of Hong Kong, and a visiting researcher at the Norwegian University of Science and Technology. He is an associate editor of IEEE Access (SCI journal) and Human-Centric Computing and Information Sciences (SCI journal), an editorial board member of 3 international journals, and a leading guest editor of 1 international journal. His research interests include reliability engineering, fault diagnosis, risk analysis, and Bayesian networks methodology and application. Up to now, he has published 65 SCI-index journal papers, 4 monographs, and holds 37 patents.

Summary

 
This book presents a bibliographical review of the use of Bayesian networks in reliability over the last decade. Bayesian network (BN) is considered to be one of the most powerful models in probabilistic knowledge representation and inference, and it is increasingly used in the field of reliability. After focusing on the engineering systems, the book subsequently discusses twelve important issues in the BN-based reliability methodologies, such as BN structure modeling, BN parameter modeling, BN inference, validation, and verification. As such, it is a valuable resource for researchers and practitioners in the field of reliability engineering.

Product details

Authors Baopin Cai, Baoping Cai, Yuanjiang Chang, Lei Jiang, Yonghon Liu, Yonghong Liu, Zengkai Liu, Zengkai et al Liu
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 31.07.2019
 
EAN 9789811365157
ISBN 978-981-1365-15-7
No. of pages 257
Dimensions 161 mm x 236 mm x 21 mm
Weight 550 g
Illustrations IX, 257 p. 153 illus., 125 illus. in color.
Subject Natural sciences, medicine, IT, technology > Technology > General, dictionaries

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.