Fr. 104.40

Python Deep Learning - Second Edition - Exploring deep learning techniques and neural network architectures with PyTorch, Keras, and TensorFlow, 2nd Edition

English · Paperback / Softback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more










Learn advanced state-of-the-art deep learning techniques and their applications using popular Python libraries

Key Features
Build a strong foundation in neural networks and deep learning with Python libraries

Explore advanced deep learning techniques and their applications across computer vision and NLP

Learn how a computer can navigate in complex environments with reinforcement learning

Book Description

With the surge in artificial intelligence in applications catering to both business and consumer needs, deep learning is more important than ever for meeting current and future market demands. With this book, you'll explore deep learning, and learn how to put machine learning to use in your projects.

This second edition of Python Deep Learning will get you up to speed with deep learning, deep neural networks, and how to train them with high-performance algorithms and popular Python frameworks. You'll uncover different neural network architectures, such as convolutional networks, recurrent neural networks, long short-term memory (LSTM) networks, and capsule networks. You'll also learn how to solve problems in the fields of computer vision, natural language processing (NLP), and speech recognition. You'll study generative model approaches such as variational autoencoders and Generative Adversarial Networks (GANs) to generate images. As you delve into newly evolved areas of reinforcement learning, you'll gain an understanding of state-of-the-art algorithms that are the main components behind popular games Go, Atari, and Dota.

By the end of the book, you will be well-versed with the theory of deep learning along with its real-world applications.

What you will learn
Grasp the mathematical theory behind neural networks and deep learning processes

Investigate and resolve computer vision challenges using convolutional networks and capsule networks

Solve generative tasks using variational autoencoders and Generative Adversarial Networks

Implement complex NLP tasks using recurrent networks (LSTM and GRU) and attention models

Explore reinforcement learning and understand how agents behave in a complex environment

Get up to date with applications of deep learning in autonomous vehicles

Who this book is for

This book is for data science practitioners, machine learning engineers, and those interested in deep learning who have a basic foundation in machine learning and some Python programming experience. A background in mathematics and conceptual understanding of calculus and statistics will help you gain maximum benefit from this book.

About the author










Ivan Vasilev started working on the first open source Java Deep Learning library with GPU support in 2013. The library was acquired by a German company, where he continued its development. He has also worked as a machine learning engineer and researcher in the area of medical image classification and segmentation with deep neural networks. Since 2017 he has focused on financial machine learning. He is working on a Python open source algorithmic trading library, which provides the infrastructure to experiment with different ML algorithms. The author holds an MSc degree in Artificial Intelligence from The University of Sofia, St. Kliment Ohridski.

Product details

Authors Peter Roelants, Daniel Slater, Gianmario Spacagna, Ivan Vasilev, Valentino Zocca
Publisher Packt Publishing
 
Languages English
Product format Paperback / Softback
Released 31.01.2019
 
EAN 9781789348460
ISBN 978-1-78934-846-0
No. of pages 386
Dimensions 191 mm x 235 mm x 21 mm
Weight 719 g
Subjects Guides
Natural sciences, medicine, IT, technology > IT, data processing > Internet

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.