Fr. 158.00

Fire Retardancy Behavior of Polymer/Clay Nanocomposites

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This thesis investigates the early ignition behavior of polymer/clay nanocomposites, which are perceived as potential eco-friendly flame retardant systems. It examines the correlation between clay structural chemistry and high-temperature transformations with clay-assisted decomposition of organic macromolecules. In particular, it investigates the unique effects of metal ions like Mg2+, Al3+ and Fe3+ that are inherent in clays (smectite) on the combustion and thermo-oxidative decomposition of polyamide 6. The results indicate that metal ions present on/in montmorillonite platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 thermal decomposition. Lastly, a simple solution in the form of a physical coating on clay surface is proposed, based on the role of polymer-clay interfacial interaction.

List of contents


Introduction.- Literature Review.- Experimental Methodology.- Decomposition Behavior of Metal-ion Exchanged Clay.- Thermo-oxidative Decomposition Behavior of Polyamide 6 Nanocomposites with Metal-ion Exchanged Clays.- Thermo-oxidative Decomposition Behavior of Polyamide 6 Nanocomposites with Structurally Different Clays.- Controlling the Interfacial Interactions Between Clay and Host Polyamide 6 Matrix.- Clay Catalysis and Fire Retardancy of Polymer/Clay Nanocomposites: A Complete Overview.

About the author










With a childhood dream of becoming an engineer by profession, Indraneel completed his Bachelor's degree in Polymer Engineering from Maharashtra Institute of Technology, affiliated with University of Pune, India in 2003 and was a recipient of prestigious Shri Siddhivinayak Gold Medal for achieving first rank in Polymer Engineering. He later went on to attain his Master's degree in Materials Science & Engineering from the Rochester Institute of Technology, USA in 2011. His PhD degree from School of Materials Science & Engineering, Nanyang Technological University, Singapore under the guidance of Asst. Professor Aravind Dasari earned him MSE Best PhD Thesis Award, Class of 2017. Upon completion of PhD, he continued to work as a post-doctoral fellow in Nanyang Technological University. His research interests include polymer structure-property relationship and product development. As of Dec 2017, he holds four Technology Disclosures and one Patent-pending invention. He has authored five first-author journal articles and one book chapter. 




Summary

This thesis investigates the early ignition behavior of polymer/clay nanocomposites, which are perceived as potential eco-friendly flame retardant systems. It examines the correlation between clay structural chemistry and high-temperature transformations with clay-assisted decomposition of organic macromolecules. In particular, it investigates the unique effects of metal ions like Mg2+, Al3+ and Fe3+ that are inherent in clays (smectite) on the combustion and thermo-oxidative decomposition of polyamide 6. The results indicate that metal ions present on/in montmorillonite platelets have preferential reactivity towards peroxy/alkoxy groups during polyamide 6 thermal decomposition.  Lastly, a simple solution in the form of a physical coating on clay surface is proposed, based on the role of polymer–clay interfacial interaction.

Product details

Authors Indraneel Suhas Zope
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 30.06.2019
 
EAN 9789811341243
ISBN 978-981-1341-24-3
No. of pages 165
Dimensions 155 mm x 11 mm x 235 mm
Weight 314 g
Illustrations XXXII, 165 p. 95 illus., 78 illus. in color.
Series Springer Theses
Springer Theses
Subjects Natural sciences, medicine, IT, technology > Technology > Mechanical engineering, production engineering

B, Ceramics, Glass, Chemistry and Materials Science, polymers, Ceramics, Glass, Composites, Natural Materials, Polymer Sciences, Materials science, materials engineering, Engineering—Materials, Polymer chemistry, composite materials, Composites (Materials)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.