Fr. 69.00

Asymptotic Nonparametric Statistical Analysis of Stationary Time Series

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

Stationarity is a very general, qualitative assumption, that can be assessed on the basis of application specifics. It is thus  a rather attractive assumption to base statistical analysis on, especially for problems for which less general qualitative assumptions, such as independence or finite memory, clearly fail. However, it has long been considered too general to be able to make statistical inference. One of the reasons for this is that rates of convergence, even of frequencies to the mean, are not available under this assumption alone.  Recently, it has been shown that, while some natural and simple problems, such as homogeneity, are indeed provably impossible to solve if one only assumes that the data is stationary (or stationary ergodic), many others can be solved with rather simple and intuitive algorithms. The latter include clustering and change point estimation among others. In this volume these  results are summarize.  The emphasis is on asymptotic consistency, since this the strongest property one can obtain assuming stationarity alone. While for most of the problem for which  a solution is found this solution is algorithmically realizable, the main objective in this area of research, the objective which is only partially attained, is to understand what is possible and what is not possible to do for stationary time series. The considered problems include homogeneity testing (the so-called two sample problem), clustering with respect to distribution, clustering with respect to independence, change point estimation, identity testing, and the general problem of composite hypotheses testing. For the latter problem, a topological criterion for the existence of a consistent test is presented.  In addition, a number of open problems is presented.

List of contents

1 Introduction.- 2 Preliminaries.- 3 Basic inference.- Clustering and change-point problems.- 5 Hypothesis Testing.- 6 Generalizations.- References.

Summary

Stationarity is a very general, qualitative assumption, that can be assessed on the basis of application specifics. It is thus  a rather attractive assumption to base statistical analysis on, especially for problems for which less general qualitative assumptions, such as independence or finite memory, clearly fail. However, it has long been considered too general to be able to make statistical inference. One of the reasons for this is that rates of convergence, even of frequencies to the mean, are not available under this assumption alone.  Recently, it has been shown that, while some natural and simple problems, such as homogeneity, are indeed provably impossible to solve if one only assumes that the data is stationary (or stationary ergodic), many others can be solved with rather simple and intuitive algorithms. The latter include clustering and change point estimation among others. In this volume these  results are summarize.  The emphasis is on asymptotic consistency, since this the strongest property one can obtain assuming stationarity alone. While for most of the problem for which  a solution is found this solution is algorithmically realizable, the main objective in this area of research, the objective which is only partially attained, is to understand what is possible and what is not possible to do for stationary time series. The considered problems include homogeneity testing (the so-called two sample problem), clustering with respect to distribution, clustering with respect to independence, change point estimation, identity testing, and the general problem of composite hypotheses testing. For the latter problem, a topological criterion for the existence of a consistent test is presented.  In addition, a number of open problems is presented.

Product details

Authors Daniil Ryabko
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 30.04.2019
 
EAN 9783030125639
ISBN 978-3-0-3012563-9
No. of pages 77
Dimensions 156 mm x 6 mm x 237 mm
Weight 155 g
Illustrations VIII, 77 p. 4 illus.
Series SpringerBriefs in Computer Science
SpringerBriefs in Computer Science
Subjects Natural sciences, medicine, IT, technology > IT, data processing > IT

C, Artificial Intelligence, Kodierungstheorie und Verschlüsselung (Kryptologie), Informationstheorie, computer science, Coding and Information Theory, Information theory, Coding theory & cryptology, Coding theory

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.