Fr. 206.00

Design of Smart Power Grid Renewable Energy Systems

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more

Informationen zum Autor Ali Keyhani, PhD, is a Professor in the Department of Electrical and Computer Engineering at Ohio State University. He is a Fellow of the IEEE and a recipient of Ohio State University, College of Engineering Research Award for 1989, 1999, and 2003. He has worked for Columbus and Southern Electric Power Company, Hewlett-Packard Co., Foster Wheeler Engineering, and TRW. Klappentext The Updated Third Edition Provides a Systems Approach to Sustainable Green Energy Production and Contains Analytical Tools for the Design of Renewable MicrogridsThe revised third edition of Design of Smart Power Grid Renewable Energy Systems integrates three areas of electrical engineering: power systems, power electronics, and electric energy conversion systems. The book also addresses the fundamental design of wind and photovoltaic (PV) energy microgrids as part of smart-bulk power-grid systems.In order to demystify the complexity of the integrated approach, the author first presents the basic concepts, and then explores a simulation test bed in MATLAB(r) in order to use these concepts to solve a basic problem in the development of smart grid energy system. Each chapter offers a problem of integration and describes why it is important. Then the mathematical model of the problem is formulated, and the solution steps are outlined. This step is followed by developing a MATLAB(r) simulation test bed. This important book:* Reviews the basic principles underlying power systems* Explores topics including: AC/DC rectifiers, DC/AC inverters, DC/DC converters, and pulse width modulation (PWM) methods* Describes the fundamental concepts in the design and operation of smart grid power grids* Supplementary material includes a solutions manual and PowerPoint presentations for instructorsWritten for undergraduate and graduate students in electric power systems engineering, researchers, and industry professionals, the revised third edition of Design of Smart Power Grid Renewable Energy Systems is a guide to the fundamental concepts of power grid integration on microgrids of green energy sources. Zusammenfassung The Updated Third Edition Provides a Systems Approach to Sustainable Green Energy Production and Contains Analytical Tools for the Design of Renewable MicrogridsThe revised third edition of Design of Smart Power Grid Renewable Energy Systems integrates three areas of electrical engineering: power systems! power electronics! and electric energy conversion systems. The book also addresses the fundamental design of wind and photovoltaic (PV) energy microgrids as part of smart-bulk power-grid systems.In order to demystify the complexity of the integrated approach! the author first presents the basic concepts! and then explores a simulation test bed in MATLAB® in order to use these concepts to solve a basic problem in the development of smart grid energy system. Each chapter offers a problem of integration and describes why it is important. Then the mathematical model of the problem is formulated! and the solution steps are outlined. This step is followed by developing a MATLAB® simula-tion test bed. This important book:* Reviews the basic principles underlying power systems* Explores topics including: AC/DC rectifiers! DC/AC inverters! DC/DC converters! and pulse width modulation (PWM) methods* Describes the fundamental concepts in the design and operation of smart grid power grids* Supplementary material includes a solutions manual and PowerPoint presentations for instructorsWritten for undergraduate and graduate students in electric power systems engineering! researchers! and industry professionals! the revised third edition of Design of Smart Power Grid Renewable Energy Systems is a guide to the fundamental concepts of power grid integration on microgrids of green energy sources. Inhaltsverzeichnis Preface xiiiAcknowledgments xviAbout the Companion Website xvii1 ...

List of contents

Preface xiii
 
Acknowledgments xvi
 
About the Companion Website xvii
 
1 Energy and Civilization 1
 
1.1 Introduction: Motivation 1
 
1.2 Fossil Fuel 2
 
1.3 Energy Use and Industrialization 2
 
1.4 Nuclear Energy 4
 
1.5 Global Warming 5
 
1.6 The Age of the Electric Power Grid 9
 
1.7 Green and Renewable Energy Sources 10
 
1.8 Hydrogen 11
 
1.9 Solar and Photovoltaic 11
 
1.9.1 Wind Power 12
 
1.9.2 Geothermal 13
 
1.10 Biomass 13
 
1.11 Ethanol 13
 
1.12 Energy Units and Conversions 13
 
1.13 Estimating the Cost of Energy 17
 
1.14 New Oil Boom-Hydraulic Fracturing (Fracking) 20
 
1.15 Estimation of Future CO2 21
 
1.16 The Paris Agreement | UNFCCC 22
 
1.17 Energy Utilization and Economic Growth 23
 
1.18 Conclusion 23
 
Problems 24
 
Further Reading 26
 
2 Power Grids 28
 
2.1 Introduction 28
 
2.2 Electric Power Grids 29
 
2.2.1 Background 29
 
2.2.2 The Construction of a Power Grid System 29
 
2.3 Basic Concepts of Power Grids 33
 
2.3.1 Common Terms 33
 
2.3.2 Calculating Power Consumption 33
 
2.4 Load Models 49
 
2.5 Transformers in Electric Power Grids 53
 
2.5.1 A Short History of Transformers 54
 
2.5.2 Transmission Voltage 54
 
2.5.3 Transformers 55
 
2.6 Modeling a Microgrid System 59
 
2.6.1 The Per Unit System 60
 
2.7 Modeling Three-Phase Transformers 69
 
2.8 Tap-Changing Transformers 72
 
2.9 Modeling Transmission Lines 74
 
Problems 87
 
References 92
 
3 Modeling of Converters in Power Grid Distributed Generation Systems 93
 
3.1 Introduction 93
 
3.2 Single-Phase DC/AC Inverters with Two Switches 94
 
3.3 Single-Phase DC/AC Inverters with a Four-Switch Bipolar Switching Method 106
 
3.3.1 Pulse Width Modulation with Unipolar Voltage Switching for a Single-Phase Full-Bridge Inverter 110
 
3.4 Three-Phase DC/AC Inverters 113
 
3.5 Pulse Width Modulation Methods 114
 
3.5.1 The Triangular Method 114
 
3.5.2 The Identity Method 119
 
3.6 Analysis of DC/AC Three-Phase Inverters 120
 
3.7 Microgrid of Renewable Energy Systems 130
 
3.8 DC/DC Converters in Green Energy Systems 133
 
3.8.1 The Step-Up Converter 134
 
3.8.2 The Step-Down Converter 144
 
3.8.3 The Buck-Boost Converter 151
 
3.9 Rectifiers 156
 
3.10 Pulse Width Modulation Rectifiers 160
 
3.11 A Three-Phase Voltage Source Rectifier Utilizing Sinusoidal PWM Switching 163
 
3.12 The Sizing of an Inverter for Microgrid Operation 167
 
3.13 The Sizing of a Rectifier for Microgrid Operation 169
 
3.14 The Sizing of DC/DC Converters for Microgrid Operation 170
 
Problems 171
 
References 176
 
4 Smart Power Grid Systems 177
 
4.1 Introduction 177
 
4.2 Power Grid Operation 178
 
4.3 Vertically and Market-Structured Power Grid 184
 
4.4 The Operations Control of a Power Grid 187
 
4.5 Load Frequency Control 187
 
4.6 Automatic Generation Control 193
 
4.7 Operating Reserve Calculation 198
 
4.8 Basic Concepts of a Smart Power Grid 199
 
4.9 The Load Factor 206
 
4.10 The Load Factor and Real-Time Pricing 209
 
4.11 A Cyber-Controlled Smart Grid 212
 
4.12 Smart Grid Development 214
 
4.13 Smart Microgrid Renewable and Green Energy Systems 216
 
4.14 A Power

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.