Fr. 135.00

Covariant Schrödinger Semigroups on Riemannian Manifolds; .

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This monograph discusses covariant Schrödinger operators and their heat semigroups on noncompact Riemannian manifolds and aims to fill a gap in the literature, given the fact that the existing literature on Schrödinger operators has mainly focused on scalar Schrödinger operators on Euclidean spaces so far. In particular, the book studies operators that act on sections of vector bundles. In addition, these operators are allowed to have unbounded potential terms, possibly with strong local singularities.
The results presented here provide the first systematic study of such operators that is sufficiently general to simultaneously treat the natural operators from quantum mechanics, such as magnetic Schrödinger operators with singular electric potentials, and those from geometry, such as squares of Dirac operators that have smooth but endomorphism-valued and possibly unbounded potentials.

The book is largely self-contained, making it accessible for graduate and postgraduate students alike. Since it also includes unpublished findings and new proofs of recently published results, it will also be interesting for researchers from geometric analysis, stochastic analysis, spectral theory, and mathematical physics..

List of contents

Sobolev spaces on vector bundles.- Smooth heat kernels on vector bundles.- Basis differential operators on Riemannian manifolds.- Some specific results for the minimal heat kernel.- Wiener measure and Brownian motion on Riemannian manifolds.- Contractive Dynkin potentials and Kato potentials.- Foundations of covariant Schrödinger semigroups.- Compactness of resolvents for covariant Schrödinger operators.- L^p properties of covariant Schrödinger semigroups.- Continuity properties of covariant Schrödinger semigroups.- Integral kernels for covariant Schrödinger semigroup.- Essential self-adjointness of covariant Schrödinger semigroups.- Form cores.- Applications.

Summary

This monograph discusses covariant Schrödinger operators and their heat semigroups on noncompact Riemannian manifolds and aims to fill a gap in the literature, given the fact that the existing literature on Schrödinger operators has mainly focused on scalar Schrödinger operators on Euclidean spaces so far. In particular, the book studies operators that act on sections of vector bundles. In addition, these operators are allowed to have unbounded potential terms, possibly with strong local singularities. 
The results presented here provide the first systematic study of such operators that is sufficiently general to simultaneously treat the natural operators from quantum mechanics, such as magnetic Schrödinger operators with singular electric potentials, and those from geometry, such as squares of Dirac operators that have smooth but endomorphism-valued and possibly unbounded potentials.

The book is largely self-contained, making it accessible for graduate and postgraduate students alike. Since it also includes unpublished findings and new proofs of recently published results, it will also be interesting for researchers from geometric analysis, stochastic analysis, spectral theory, and mathematical physics..

Product details

Authors Batu Güneysu
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2019
 
EAN 9783319886787
ISBN 978-3-31-988678-7
No. of pages 239
Dimensions 170 mm x 241 mm x 15 mm
Weight 412 g
Illustrations XVIII, 239 p.
Series Operator Theory: Advances and Applications
Operator Theory: Advances and Applications
Subjects Natural sciences, medicine, IT, technology > Mathematics > Analysis

Analysis, B, Differentialrechnung und -gleichungen, Mathematics and Statistics, Manifolds (Mathematics), Partial Differential Equations, Differential calculus & equations, Global analysis (Mathematics), Global Analysis and Analysis on Manifolds

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.