Fr. 52.50

Gewöhnliche Differentialgleichungen und dynamische Systeme; .

German · Paperback / Softback

Shipping usually within 4 to 7 working days

Description

Read more

Die Theorie gewöhnlicher Differentialgleichungen und dynamischer Systeme spielt eine zentrale Rolle in der Modellierung realer zeitabhängiger Prozesse. Damit gehört sie zur universellen Grundausbildung von Mathematikern, Physikern, Informatikern und Ingenieuren und sollte auch in den Life Sciences und den Wirtschaftswissenschaften präsent sein.
Das vorliegende Lehrbuch beinhaltet eine moderne Darstellung dieser Theorie, wobei der Schwerpunkt auf Dynamik gelegt ist. Neben den klassischen Inhalten werden diverse neue Resultate präsentiert, die bisher nicht in Lehrbüchern verfügbar sind. Eine besondere Stärke des Buchs liegt in den Beispielen und Anwendungen der Modellierung, denen viel Raum gewidmet ist, um die Leistungsfähigkeit der Theorie zu belegen.
In der 2., überarbeiteten Auflage sind neben einigen Ergänzungen und Verbesserungen auch neue Themen aufgenommen worden. Diese machen das Buch noch attraktiver und interessanter für weiterführende Seminare und Studien, sowohl in theoretischer Hinsicht als auch für Anwendungen in der mathematischen Modellierung.

List of contents

Prolog.- Notationen.- I Gewöhnliche Differentialgleichungen.- 1. Einführung.- 2 Existenz und Eindeutigkeit.- 3 Lineare Systeme.- 4 Stetige und differenzierbare Abhängigkeit.- 5 Elementare Stabilitätstheorie.- II Dynamische Systeme.- 6 Existenz und Eindeutigkeit II.- 7 Invarianz.- 8 Ljapunov-Funktionen und Stabilität.- 9 Ebene autonome Systeme.- 10 Linearisierung und invariante Mannigfaltigkeiten.- 11 Periodische Lösungen.- 12 Verzweigungstheorie.- 13 Differentialgleichungen auf Mannigfaltigkeiten.- Epilog.- Abbildungsverzeichnis.- Literaturverzeichnis.- Lehrbücher und Monographien.- Originalliteratur.- Index.

About the author

Als vorlesungsbegleitende Lektüre ist das Buch sehr gelungen. Die mathematischen Verfahren werden detailliert erläutert. Das besondere sind jedoch die ausführlich beschriebenen Beispiele, die man am liebsten noch vor der Theorie liest. Die Lösung wird so ausführlich hergeleitet, dass keine Fragen offen bleiben. Uneingeschränkt empfehlenswert ist dieses Buch daher für Studenten der Physik und Mathematik.
Mathematik-Verein RHO e.V.

Summary

Die Theorie gewöhnlicher Differentialgleichungen und dynamischer Systeme spielt eine zentrale Rolle in der Modellierung realer zeitabhängiger Prozesse. Damit gehört sie zur universellen Grundausbildung von Mathematikern, Physikern, Informatikern und Ingenieuren und sollte auch in den Life Sciences und den Wirtschaftswissenschaften präsent sein.
Das vorliegende Lehrbuch beinhaltet eine moderne Darstellung dieser Theorie, wobei der Schwerpunkt auf Dynamik gelegt ist. Neben den klassischen Inhalten werden diverse neue Resultate präsentiert, die bisher nicht in Lehrbüchern verfügbar sind. Eine besondere Stärke des Buchs liegt in den Beispielen und Anwendungen der Modellierung, denen viel Raum gewidmet ist, um die Leistungsfähigkeit der Theorie zu belegen.
In der 2., überarbeiteten Auflage sind neben einigen Ergänzungen und Verbesserungen auch neue Themen aufgenommen worden. Diese machen das Buch noch attraktiver und interessanter für weiterführende Seminare und Studien, sowohl in theoretischer Hinsicht als auch für Anwendungen in der mathematischen Modellierung.

Additional text

Prolog.- Notationen.- I Gewöhnliche Differentialgleichungen.- 1. Einführung.- 2 Existenz und Eindeutigkeit.- 3 Lineare Systeme.- 4 Stetige und differenzierbare Abhängigkeit.- 5 Elementare Stabilitätstheorie.- II Dynamische Systeme.- 6 Existenz und Eindeutigkeit II.- 7 Invarianz.- 8 Ljapunov-Funktionen und Stabilität.- 9 Ebene autonome Systeme.- 10 Linearisierung und invariante Mannigfaltigkeiten.- 11 Periodische Lösungen.- 12 Verzweigungstheorie.- 13 Differentialgleichungen auf Mannigfaltigkeiten.- Epilog.- Abbildungsverzeichnis.- Literaturverzeichnis.- Lehrbücher und Monographien.- Originalliteratur.- Index.

Product details

Authors Jan Prüss, Jan W Prüss, Jan W. Prüss, Mathias Wilke
Publisher Springer, Berlin
 
Languages German
Product format Paperback / Softback
Released 09.10.2019
 
EAN 9783030123611
ISBN 978-3-0-3012361-1
No. of pages 432
Dimensions 169 mm x 245 mm x 26 mm
Weight 788 g
Illustrations XVIII, 432 S. 42 Abb., 21 Abb. in Farbe.
Series Grundstudium Mathematik
Grundstudium Mathematik
Subjects Natural sciences, medicine, IT, technology > Mathematics > Analysis

Analysis, A, Mathematics and Statistics, Analysis (Mathematics), Mathematical analysis

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.