Fr. 119.00

Reviews of Plasma Physics

English · Paperback / Softback

Will be released 01.01.1991

Description

Read more

List of contents

Magnetothermal Processes in Dense Plasmas.- 1. Cooling and Anomalous Heat Conduction in Plasmas with ??l.- 2. Radiative Cooling Waves in Dense Magnetized Plasmas.- 3. Loss of Magnetic Flux during Field Reversal in ?-Pinches.- 4. Generation of Very Strong Magnetic Fields by Liner Compression of Plasmas.- 5. Rapid Dissipation of Magnetic Field Energy in Neutral Layers.- 6. Diffusion of Heavy Impurities in Dense Plasmas.- 7. Radiative Instability in Multicomponent Plasmas.- References.- Collective Interaction of Relativistic Electron Beams with Plasmas.- 1. Linear Dispersion Equation. Resonances in the Excitation of Waves by Particles.- 2. Beam Instability in a Plasma without a Magnetic Field [the Excitation of Langmuir Waves].- 3. Hydrodynamic Instabilities of Beams in Magnetoactive Plasmas.- 3.1. Excitation of Langmuir Waves.- 3.2. Excitation of Helicons.- 3.3. Excitation of Magnetized Electron Oscillations with ?H ? ?p.- 3.4. Excitation of Slow Extraordinary Waves.- 4. Kinetic Instabilities of Beams in Magnetoactive Plasmas.- 4.1. Excitation of Langmuir Waves with ?H ? ? p.- 4.2. Excitation of Helicons.- 4.3. Excitation of Magnetized Electron Oscillations.- 4.4. Excitation of Slow Extraordinary Waves.- 5. Beam Instability in an Inhomogeneous Plasma.- 5.1. Regular Inhomogeneity.- 5.2. Random Inhomogeneity.- 6. Quasilinear Relaxation of an REB in a Plasma without a Magnetic Field.- 7. Nonlinear Interaction and Streaming Spectra of Langmuir Waves.- 8. Stability of the Stationary Spectrum during Stimulated Wave Scattering.- 9. Relaxation of an REB during Wave Scattering on Ions.- 9.1. Qualitative Treatment.- 9.2. The Stationary Spectrum.- 9.3. Diffusion of Beam Electrons.- 9.4. Collisional Damping and Radiative Losses.- 10. Accumulation of Electromagnetic Waves.- 11. Scattering of Langmuir Waves on Stimulated Density Fluctuations.- 12. Langmuir Turbulence in Magnetoactive Plasmas.- 12.1. Statement of the Stream Spectrum Problem.- 12.2. The ll-Scattering Regime.- 12.3. lr-Scattering.- 13. Interaction of Beams with Helicons.- 13.1. Qualitative Treatment.- 13.2. Solution of the Quasilinear Problem.- 13.3. Discussion of Results.- 14. Hot Electrons.- 14.1. Electron Heating in Plasmas without a Magnetic Field.- 14.2. Electron Heating in Magnetoactive Plasmas.- References.- Equilibrium and Stability of Plasmas in Stellarators.- 1. Basic Results of the Theory.- 1.1. Development of Theoretical Research.- 1.2. Basic Parameters of Stellarators.- 1.3. Plasma Confinement in Stellarators with a Spatial Axis.- 1.4. Plasma Confinement in Conventional Stellarators.- 1.5. Results of a Numerical Calculation.- 2. The Three-dimensional Equilibrium Equations.- 2.1. The Magnetic Field in Flux Coordinates.- 2.2. Special Choices of Flux Coordinates.- 2.3. The Relationship between Currents and Fluxes.- 2.4. General Statement of the Equilibrium Problems.- 2.5. The Equilibrium Problem in Terms of Two-Dimensional Equations. Evolution of the Equilibrium.- 2.6. Systems of Three-Dimensional Equilibrium Equations in Different Representations.- 3. Configurations with Helical Symmetry.- 3.1. The Equilibrium Equations.- 3.2. Basic Geometrical Relationships.- 3.3. Equations Relating the Currents and Fluxes.- 3.4. Other Formulations of the Equilibrium Equations.- 4. The Theory of Plasma Equilibrium in Conventional Stellarators.- 4.1. The Stellarator Approximation.- 4.2. Flux Coordinates, Basic Equations, and Features of Their Solution by Expansion.- 4.3 Reducing the Three-Dimensional Equilibrium Equations to Two Dimensions.- 4.4. Analysis of the Two-Dimensional Equations. Other Formulations of Them.- 4.5. Derivation of the Scalar Two-Dimensional Equilibrium Equation from the Averaged MHD Equations.- 4.6. Intrinsic Expansion Parameters.- 5. Some Features of Plasma Equilibrium in Stellarators.- 5.1. Approximate Description of Equilibrium.- 5.2. Evolution of the Plasma Equilibrium in Stellarators.- 5.3. The Diamagnetic Effect in Stellarators.- 6. MHD Instabilities of Pla

Product details

Assisted by B Kadomtsev (Editor), B. B. Kadomtsev (Editor), B.B. Kadomtsev (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Release 01.01.1991, delayed
 
EAN 9781461577867
ISBN 978-1-4615-7786-7
No. of pages 336
Series Reviews of Plasma Physics
Reviews of Plasma Physics
Subject Natural sciences, medicine, IT, technology > Physics, astronomy > Mechanics, acoustics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.