Fr. 135.00

Multimodal Optimization by Means of Evolutionary Algorithms

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This book offers the first comprehensive taxonomy for multimodal optimization algorithms, work with its root in topics such as niching, parallel evolutionary algorithms, and global optimization.
The author explains niching in evolutionary algorithms and its benefits; he examines their suitability for use as diagnostic tools for experimental analysis, especially for detecting problem (type) properties; and he measures and compares the performances of niching and canonical EAs using different benchmark test problem sets. His work consolidates the recent successes in this domain, presenting and explaining use cases, algorithms, and performance measures, with a focus throughout on the goals of the optimization processes and a deep understanding of the algorithms used.
The book will be useful for researchers and practitioners in the area of computational intelligence, particularly those engaged with heuristic search, multimodal optimization, evolutionary computing, and experimental analysis.

List of contents

Introduction: Towards Multimodal Optimization.- Experimentation in Evolutionary Computation.- Groundwork for Niching.- Nearest-Better Clustering.- Niching Methods and Multimodal Optimization Performance.- Nearest-Better Based Niching.

About the author

Dr. Mike Preuss got his Ph.D. in the Technische Universität Dortmund and he is now a researcher at the Westfälische Wilhelms-Universität Münster. He has published in the leading journals and conferences on various aspects of computational intelligence, in particular evolutionary computing, heuristics, search and multicriteria optimization and served on many of the key academic conference committees, journal boards and review committees in this field. He is a leading figure in the application of computational and artificial intelligence to games.

Summary

This book offers the first comprehensive taxonomy for multimodal optimization algorithms, work with its root in topics such as niching, parallel evolutionary algorithms, and global optimization.
The author explains niching in evolutionary algorithms and its benefits; he examines their suitability for use as diagnostic tools for experimental analysis, especially for detecting problem (type) properties; and he measures and compares the performances of niching and canonical EAs using different benchmark test problem sets. His work consolidates the recent successes in this domain, presenting and explaining use cases, algorithms, and performance measures, with a focus throughout on the goals of the optimization processes and a deep understanding of the algorithms used.
The book will be useful for researchers and practitioners in the area of computational intelligence, particularly those engaged with heuristic search, multimodal optimization, evolutionary computing, and experimental analysis.

Additional text

“It provides an excellent explanation of the theoretical background of many topics in evolutionary computation … . I strongly recommend this book for graduate students or any researcher who wants to work in the EC field … . It also may help in improving some algorithms and may motivate the researcher to introduce new ones. … the chapters are self-contained so that you can read individual chapters that you are interested in without the need to read the whole book.” (Nailah Al-Madi, Genetic Programming and Evolvable Machines, Vol. 17 (3), September, 2016)

Report

"It provides an excellent explanation of the theoretical background of many topics in evolutionary computation ... . I strongly recommend this book for graduate students or any researcher who wants to work in the EC field ... . It also may help in improving some algorithms and may motivate the researcher to introduce new ones. ... the chapters are self-contained so that you can read individual chapters that you are interested in without the need to read the whole book." (Nailah Al-Madi, Genetic Programming and Evolvable Machines, Vol. 17 (3), September, 2016)

Product details

Authors Mike Preuss
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2019
 
EAN 9783319791562
ISBN 978-3-31-979156-2
No. of pages 189
Dimensions 155 mm x 11 mm x 235 mm
Weight 330 g
Illustrations XX, 189 p. 42 illus., 5 illus. in color.
Series Natural Computing Series
Natural Computing Series
Subjects Natural sciences, medicine, IT, technology > Mathematics > Probability theory, stochastic theory, mathematical statistics

Optimierung, B, Künstliche Intelligenz, Algorithms, Optimization, Artificial Intelligence, computer science, Theory of Computation, Computational Intelligence, Mathematical optimization, Algorithm Analysis and Problem Complexity

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.