Fr. 188.00

A Phenomenological Mathematical Modelling Framework for the Degradation of Bioresorbable Composites

English · Hardback

Shipping usually within 2 to 3 weeks (title will be printed to order)

Description

Read more


This book presents a generalised computational model for the degradation of resorbable composites, using analytic expressions to represent the interwoven phenomena present during degradation. It then combines this modelling framework with a comprehensive database of quantitative degradation data mined from existing literature and from novel experiments, to provide new insights into the interrelated factors controlling degradation.
Resorbable composites made of biodegradable polyesters and calcium-based ceramics have significant therapeutic potential as tissue engineering scaffolds, as temporary implants and as drug-loaded matrices for controlled release. However, their degradation is complex and the rate of resorption depends on multiple connected factors such as the shape and size of the device, polymer chemistry and molecular weight, particle phase, size, volume fraction, distribution and pH-dependent dissolution properties. Understanding and ultimately predicting the degradation of resorbable composites is of central importance if we are to fully unlock the promise of these materials.

List of contents

Introduction.- Literature review.- Degradation of bioresorbable composites: the models.- Degradation of bioresorbable composites: tricalcium phosphate case studies.- Degradation of bioresorbable composites: hydroxyapatite case studies.- Experimental degradation study of PLGA-CaCO3 nanocomposites.- Degradation of bioresorbable composites: calcium carbonate case studies.- Conclusions and future work.- Appendix.

Summary

This book presents a generalised computational model for the degradation of resorbable composites, using analytic expressions to represent the interwoven phenomena present during degradation. It then combines this modelling framework with a comprehensive database of quantitative degradation data mined from existing literature and from novel experiments, to provide new insights into the interrelated factors controlling degradation.
Resorbable composites made of biodegradable polyesters and calcium-based ceramics have significant therapeutic potential as tissue engineering scaffolds, as temporary implants and as drug-loaded matrices for controlled release. However, their degradation is complex and the rate of resorption depends on multiple connected factors such as the shape and size of the device, polymer chemistry and molecular weight, particle phase, size, volume fraction, distribution and pH-dependent dissolution properties. Understanding and ultimately predicting the degradation of resorbable composites is of central importance if we are to fully unlock the promise of these materials.

Product details

Authors Ismael Moreno-Gomez
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.01.2019
 
EAN 9783030049898
ISBN 978-3-0-3004989-8
No. of pages 325
Dimensions 156 mm x 242 mm x 28 mm
Weight 702 g
Illustrations XLIII, 325 p. 383 illus., 262 illus. in color.
Series Springer Theses
Springer Theses
Subject Natural sciences, medicine, IT, technology > Technology > Mechanical engineering, production engineering

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.