Fr. 135.00

Ordinary and Fractional Approximation by Non-additive Integrals: Choquet, Shilkret and Sugeno Integral Approximators

English · Hardback

Shipping usually within 6 to 7 weeks

Description

Read more

Ordinary and fractional approximations by non-additive integrals, especially by integral approximators of Choquet, Silkret and Sugeno types, are a new trend in approximation theory. These integrals are only subadditive and only the first two are positive linear, and they produce very fast and flexible approximations based on limited data. The author presents both the univariate and multivariate cases. The involved set functions are much weaker forms of the Lebesgue measure and they were conceived to fulfill the needs of economic theory and other applied sciences.
The approaches presented here are original, and all chapters are self-contained and can be read independently. Moreover, the book's findings are sure to find application in many areas of pure and applied mathematics, especially in approximation theory, numerical analysis and mathematical economics (both ordinary and fractional). Accordingly, it offers a unique resource for researchers, graduate students, and for coursework in the above-mentioned fields, and belongs in all science and engineering libraries.

List of contents

Approximation with rates by Kantorovich-Choquet quasi-interpolation neural network operators.- Approximation with rates by Perturbed Kantorovich-Choquet Neural Network Operators.- Approximation with rates by Shift Invariant Univariate Sublinear-Choquet Operators.- Approximation with rates by Shift Invariant Multivariate Sublinear-Choquet Operators.- Hardy type inequalities for Choquet integrals.- Quantitative Approximation by Choquet integrals.- Conformable Fractional Approximation by Choquet integrals.- Multivariate and Convex Quantitative Approximation by Choquet integrals.- Caputo and Canavati fractional Quantitative Approximation by Choquet integrals.- Mixed Conformable and Iterated fractional Quantitative Approximation by Choquet integrals.

Summary

Ordinary and fractional approximations by non-additive integrals, especially by integral approximators of Choquet, Silkret and Sugeno types, are a new trend in approximation theory. These integrals are only subadditive and only the first two are positive linear, and they produce very fast and flexible approximations based on limited data. The author presents both the univariate and multivariate cases. The involved set functions are much weaker forms of the Lebesgue measure and they were conceived to fulfill the needs of economic theory and other applied sciences.

The approaches presented here are original, and all chapters are self-contained and can be read independently. Moreover, the book’s findings are sure to find application in many areas of pure and applied mathematics, especially in approximation theory, numerical analysis and mathematical economics (both ordinary and fractional). Accordingly, it offers a unique resource for researchers, graduate students, and for coursework in the above-mentioned fields, and belongs in all science and engineering libraries.

Product details

Authors George A Anastassiou, George A. Anastassiou
Publisher Springer, Berlin
 
Languages English
Product format Hardback
Released 01.01.2019
 
EAN 9783030042868
ISBN 978-3-0-3004286-8
No. of pages 347
Dimensions 162 mm x 236 mm x 26 mm
Weight 696 g
Illustrations XIV, 347 p. 1 illus.
Series Studies in Systems, Decision and Control
Studies in Systems, Decision and Control
Subjects Natural sciences, medicine, IT, technology > Technology > General, dictionaries

B, engineering, Control and Systems Theory, Systems Theory, Control, Computational Intelligence, Control engineering, Automatic control engineering, System Theory, Cybernetics & systems theory, Cybernetics and systems theory

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.