Fr. 90.00

Distributions, Partial Differential Equations, and Harmonic Analysis

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

The aim of this book is to offer, in a concise, rigorous, and largely self-contained manner, a rapid introduction to the theory of distributions and its applications to partial differential equations and harmonic analysis. The book is written in a format suitable for a graduate course spanning either over one-semester, when the focus is primarily on the foundational aspects, or over a two-semester period that allows for the proper amount of time to cover all intended applications as well. It presents a balanced treatment of the topics involved, and contains a large number of exercises (upwards of two hundred, more than half of which are accompanied by solutions), which have been carefully chosen to amplify the effect, and substantiate the power and scope, of the theory of distributions. Graduate students, professional mathematicians, and scientifically trained people with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-studyguide. Throughout, a special effort has been made to develop the theory of distributions not as an abstract edifice but rather give the reader a chance to see the rationale behind various seemingly technical definitions, as well as the opportunity to apply the newly developed tools (in the natural build-up of the theory) to concrete problems in partial differential equations and harmonic analysis, at the earliest opportunity.
The main additions to the current, second edition, pertain to fundamental solutions (through the inclusion of the Helmholtz operator, the perturbed Dirac operator, and their iterations) and the theory of Sobolev spaces (built systematically from the ground up, exploiting natural connections with the Fourier Analysis developed earlier in the monograph). 

List of contents

Introduction.- Summary of Topological and Functional Analysis Results.- Weak Derivatives.- The Space D0() of Distributions.- The Fourier Transform.- The Space of Tempered Distributions.- Fundamental Solution.- The Laplace Operator.- The Heat Operator.- The Wave Operator.- The Lame Operator.- Fundamental Solutions for Other Operators.- Hypoelliptic operators.- Sobolev spaces.- Appendix.- References. 

About the author

Dorina Mitrea is a Professor at University of Missouri in the Mathematics Department.

Summary

The aim of this book is to offer, in a concise, rigorous, and largely self-contained manner, a rapid introduction to the theory of distributions and its applications to partial differential equations and harmonic analysis. The book is written in a format suitable for a graduate course spanning either over one-semester, when the focus is primarily on the foundational aspects, or over a two-semester period that allows for the proper amount of time to cover all intended applications as well. It presents a balanced treatment of the topics involved, and contains a large number of exercises (upwards of two hundred, more than half of which are accompanied by solutions), which have been carefully chosen to amplify the effect, and substantiate the power and scope, of the theory of distributions. Graduate students, professional mathematicians, and scientifically trained people with a wide spectrum of mathematical interests will find this book to be a useful resource and complete self-studyguide. Throughout, a special effort has been made to develop the theory of distributions not as an abstract edifice but rather give the reader a chance to see the rationale behind various seemingly technical definitions, as well as the opportunity to apply the newly developed tools (in the natural build-up of the theory) to concrete problems in partial differential equations and harmonic analysis, at the earliest opportunity.
The main additions to the current, second edition, pertain to fundamental solutions (through the inclusion of the Helmholtz operator, the perturbed Dirac operator, and their iterations) and the theory of Sobolev spaces (built systematically from the ground up, exploiting natural connections with the Fourier Analysis developed earlier in the monograph). 

Product details

Authors Dorina Mitrea
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 31.03.2019
 
EAN 9783030032951
ISBN 978-3-0-3003295-1
No. of pages 600
Dimensions 155 mm x 33 mm x 235 mm
Weight 931 g
Illustrations XXIII, 600 p. 1 illus.
Series Universitext
Universitext
Subjects Natural sciences, medicine, IT, technology > Mathematics > Analysis

Analysis, B, Mathematische Analysis, allgemein, Funktionalanalysis und Abwandlungen, Mathematics and Statistics, Functional Analysis, Partial Differential Equations, Differential equations, Stochastics, Functional analysis & transforms, Fourier Analysis, Potential Theory, Potential theory (Mathematics)

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.