Fr. 266.00

Wavefront Shaping for Biomedical Imaging

English · Hardback

Shipping usually within 1 to 3 weeks (not available at short notice)

Description

Read more










Learn about the theory, techniques and applications of wavefront shaping in biomedical imaging from the researchers defining the field.

List of contents










Part I. Adaptive Optical Microscopy for Biological Imaging: 1. Adaptive optical microscopy using image-based wavefront sensing Jacopo Antonello, Débora M. Andrade and Martin J. Booth; 2. Adaptive optical microscopy using guide-star based direct wavefront sensing Xiaodong Tao, Oscar Azucena and Joel Kubby; Part II. Deep Tissue Microscopy: 3. Deep tissue fluorescence microscopy Meng Cui; 4. Zonal adaptive optical microscopy for deep tissue imaging Cristina Rodr¿guez and Na Ji; Part III. Focusing Light through Turbid Media using the Scattering Matrix: 5. Transmission matrix approach to light control in complex media Sylvain Gigan; 6. Coupling optical wavefront shaping and photoacoustics Emmanuel Bossy; 7. Imaging and controlling light propagation deep within scattering media using time-resolved reflection matrix Youngwoon Choi, Sungsam Kang and Wonshik Choi; Part IV. Focusing Light through Turbid Media using Feedback Optimization: 8. Feedback-based wavefront shaping Ivo M. Vellekoop; 9. Focusing light through scattering media using a micro-electro-mechanical systems spatial light modulator Yang Lu and Hari P. Paudel; 10. Computer-generated holographic techniques to control light propagating through scattering media using a digital-mirror-device spatial light modulator Antonio M. Caravaca-Aguirre and Rafael Piestun; 11. Transmission matrix correlations Roarke Horstmeyer, Ivo M. Vellekoop and Benjamin Judkewitz; Part V. Time Reversal, Optical Phase Conjugation: 12. Re¿ection matrix approaches in scattering media: from detection to imaging Amaury Badon, Alexandre Aubry and Mathias Fink; 13. Wavefront-engineered optical focusing into scattering media using ultrasound- or perturbation-based guide stars: TRUE, TRAP, SEWS, and PAWS Xiao Xu, Cheng Ma, Puxiang Lai and Lihong V. Wang; Part VI. Shaped Beams for Light Sheet Microscopy: 14. Light-sheet microscopy with wavefront shaped beams: looking deeper into objects and increasing image contrast Alexander Rohrbach; 15. Shaped beams for light sheet imaging and optical manipulation Tom Vettenburg and Kishan Dholakia; Part VII. Tomography: 16. Incoherent illumination tomography and adaptive optics Peng Xiao, Mathias Fink and A. Claude Boccara; 17. Computational adaptive optics for broadband optical interferometric tomography of biological tissue Nathan D. Shemonski, Yuan-Zhi Liu, Fredrick A. South and Stephen A. Boppart.

About the author

Joel Kubby was a Professor in the Jack Baskin School of Engineering at the University of California, Santa Cruz. He also authored A Guide to Hands-on MEMS Design and Prototyping (Cambridge, 2011).Sylvain Gigan is a Professor at Sorbonne Université, Paris and Group Leader in the Laboratoire Kastler-Brossel, Paris.Meng Cui is Assistant Professor of Electrical and Computer Engineering and Biology at Purdue University, Indiana.

Summary

Learn about the theory, techniques and applications of wavefront shaping in biomedical imaging from the researchers defining the field. This is the ideal text for academics and practitioners in optics, biophotonics, and biomedical engineering who use biomedical imaging tools, and graduate students wanting to advance their knowledge of the topic.

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.