Fr. 99.00

Machine Learning in Quantitative Finance History, Theory and - Application

English · Hardback

Will be released 31.05.2019

Description

Read more

Written by a senior and well-known member of the Quantitative Finance community who currently runs a research group at a major investment bank, the book will demonstrate the use of machine learning techniques to tackle traditional data science type problems - time-series analysis and the prediction of realised volatility but will also look at novel applications. For example, the Universal Approximation Theorem of Neural Networks shows that a neural network can be used to approximate any function (subject to a number of weak conditions), although how the network is trained is not given. This will be explored within the book. Specific applications will include using a trained neural network to represent market-standard volatility smile models (such as SABR) as well as complex derivative pricing. The book will also potentially look at training a network via reinforcement learning to risk manage a derivatives portfolio. Readers will be attracted by a comprehensive presentation of the techniques available, with the historical perspective providing intuitive understanding of their development, combined with a range of practical examples from the trading floor.
 
Key features:
* Describes modern machine learning techniques including deep neural networks, reinforcement learning, long-short term memory networks, etc.
* Provides applications of these techniques to problems within Quantitative Finance (including applications to derivatives modelling)
* Presents the historical development of the subject from MENACE to Alpha Go Zero and AlphaZero

Summary

Written by a senior and well-known member of the Quantitative Finance community who currently runs a research group at a major investment bank, the book will demonstrate the use of machine learning techniques to tackle traditional data science type problems - time-series analysis and the prediction of realised volatility but will also look at novel applications. For example, the Universal Approximation Theorem of Neural Networks shows that a neural network can be used to approximate any function (subject to a number of weak conditions), although how the network is trained is not given. This will be explored within the book. Specific applications will include using a trained neural network to represent market-standard volatility smile models (such as SABR) as well as complex derivative pricing. The book will also potentially look at training a network via reinforcement learning to risk manage a derivatives portfolio. Readers will be attracted by a comprehensive presentation of the techniques available, with the historical perspective providing intuitive understanding of their development, combined with a range of practical examples from the trading floor.

Key features:
* Describes modern machine learning techniques including deep neural networks, reinforcement learning, long-short term memory networks, etc.
* Provides applications of these techniques to problems within Quantitative Finance (including applications to derivatives modelling)
* Presents the historical development of the subject from MENACE to Alpha Go Zero and AlphaZero

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.