Fr. 63.00

Saddle-Point Problems and Their Iterative Solution

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This book provides essential lecture notes on solving large linear saddle-point systems, which arise in a wide range of applications and often pose computational challenges in science and engineering. The focus is on discussing the particular properties of such linear systems, and a large selection of algebraic methods for solving them, with an emphasis on iterative methods and preconditioning. The theoretical results presented here are complemented by a case study on potential fluid flow problem in a real world-application. This book is mainly intended for students of applied mathematics and scientific computing, but also of interest for researchers and engineers working on various applications. It is assumed that the reader has completed a basic course on linear algebra and numerical mathematics.

List of contents

Introductory remarks. Formulation of saddle-point problem.- Applications leading to saddle-point problems. Augmented systems in least squares problems. Saddle point problems from the discretization of partial differential equations with constraints. Kuhn-Karush-Tucker (KKT) systems in interior-point methods.- Properties of saddle point matrices. The inverse of a saddle-point matrix. Spectral properties of saddle-point matrices.- Solution approaches for saddle-point problems. Schur complement reduction. Null-space projection method.- Direct methods for symmetric indefinite systems. Direct solution of saddle-point problems.- AIterative solution of saddle-point problems. Stationary iteration methods. Krylov subspace methods. Preconditioned Krylov subspace methods.- Saddle-point preconditioners. Block diagonal and triangular preconditioners. Indefinite preconditioning.- Implementation and numerical behavior of saddle-point solvers.- Case study: Polluted undeground water flow modelling in porous media.

About the author

Miroslav Rozložník, Czech Academy of Science, Praha, Czech Republic

Summary

This book provides essential lecture notes on solving large linear saddle-point systems, which arise in a wide range of applications and often pose computational challenges in science and engineering. The focus is on discussing the particular properties of such linear systems, and a large selection of algebraic methods for solving them, with an emphasis on iterative methods and preconditioning. The theoretical results presented here are complemented by a case study on potential fluid flow problem in a real world-application. This book is mainly intended for students of applied mathematics and scientific computing, but also of interest for researchers and engineers working on various applications. It is assumed that the reader has completed a basic course on linear algebra and numerical mathematics.

Product details

Authors Miroslav Rozlo¿ník, Miroslav Rozlozník, Miroslav Rozložník
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2018
 
EAN 9783030014308
ISBN 978-3-0-3001430-8
No. of pages 136
Dimensions 156 mm x 9 mm x 233 mm
Weight 250 g
Illustrations XIV, 136 p. 37 illus., 12 illus. in color.
Series Necas Center Series
Necas Center Series
Nečas Center Series
Nečas Center Series
Ne¿as Center Series
Subject Natural sciences, medicine, IT, technology > Mathematics > Probability theory, stochastic theory, mathematical statistics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.