Fr. 135.00

First Search for the EMC Effect and Nuclear Shadowing in Neutrino Nuclear Deep Inelastic Scattering at MINERvA

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This thesis details significant improvements in the understanding of the nuclear EMC effect and nuclear shadowing in neutrino physics, and makes substantial comparisons with electron scattering physics. Specifically, it includes the first systematic study of the EMC ratios of carbon, iron and lead to plastic scintillator of neutrinos. The analysis presented provides the best evidence to date that the EMC effect is similar between electrons and neutrinos within the sensitivity of the data. Nuclear shadowing is measured systematically for the first time with neutrinos. In contrast with the data on the EMC effect, the data on nuclear shadowing support the conclusion that nuclear shadowing may be stronger for neutrinos than it is for electrons. This conclusion points to interesting new nuclear physics.

List of contents

1. Introduction.- 2. Theory.- 3. Event Simulation.- 4. Neutrino Beamline.- 5. The Minerva Detector and Simulation.- 6. Event Reconstruction.- 7. Overview of the Measurement.- 8. Event Selection and Efficiency.- 9. Backgrounds.- 10. Systematic Uncertainties.- 11. Reconstructed and Unfolded Event Yields.- 12. Efficiency Correction and Flux Division.- 13. Cross Section Results.- 14. Conclusions.- Appendix.- A. Sideband Pilots.- B. Non-dis Event Uncertainties (After Tuning).- C. Plastic Background Subtraction.- D. Migration Matrices.- E. Event Yields (Reconstructed).- F. Dis Event Yields (Unfolded Kinematics).- G. Efficiency Plots. 

About the author

Joel Mousseau earned his Bachelor of Science with an honors concentration in physics and a minor in mathematics from the University of Michigan in 2007. He was awarded a Master of Science from the University of Florida in 2009, and finally his Doctor of Philosophy in physics from the University of Florida in 2015.

Summary

This thesis details significant improvements in the understanding of the nuclear EMC effect and nuclear shadowing in neutrino physics, and makes substantial comparisons with electron scattering physics. Specifically, it includes the first systematic study of the EMC ratios of carbon, iron and lead to plastic scintillator of neutrinos. The analysis presented provides the best evidence to date that the EMC effect is similar between electrons and neutrinos within the sensitivity of the data. Nuclear shadowing is measured systematically for the first time with neutrinos. In contrast with the data on the EMC effect, the data on nuclear shadowing support the conclusion that nuclear shadowing may be stronger for neutrinos than it is for electrons. This conclusion points to interesting new nuclear physics.

Product details

Authors Joel Allen Mousseau
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2018
 
EAN 9783319831473
ISBN 978-3-31-983147-3
No. of pages 147
Dimensions 155 mm x 9 mm x 235 mm
Weight 260 g
Illustrations XVI, 147 p. 32 illus., 23 illus. in color.
Series Springer Theses
Springer Theses
Subjects Natural sciences, medicine, IT, technology > Physics, astronomy > Theoretical physics

B, Physics, Physics and Astronomy, Particle & high-energy physics, Accelerator Physics, Quantum field theory, Elementary particles (Physics), Elementary Particles, Quantum Field Theory, Particle acceleration, Particle Acceleration and Detection, Beam Physics, Mathematical physics, Mathematical Methods in Physics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.