Fr. 135.00

Beyond Standard Model Collider Phenomenology of Higgs Physics and Supersymmetry

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This thesis studies collider phenomenology of physics beyond the Standard Model at the Large Hadron Collider (LHC). It also explores in detail advanced topics related to Higgs boson and supersymmetry - one of the most exciting and well-motivated streams in particle physics. In particular, it finds a very large enhancement of multiple Higgs boson production in vector-boson scattering when Higgs couplings to gauge bosons differ from those predicted by the Standard Model. The thesis demonstrates that due to the loss of unitarity, the very large enhancement for triple Higgs boson production takes place. This is a truly novel finding.
The thesis also studies the effects of supersymmetric partners of top and bottom quarks on the Higgs production and decay at the LHC, pointing for the first time to non-universal alterations for two main production processes of the Higgs boson at the LHC-vector boson fusion and gluon-gluon fusion.
Continuing the exploration of Higgs boson and supersymmetry at the LHC, the thesis extends existing experimental analysis and shows that for a single decay channel the mass of the top quark superpartner below 175 GeV can be completely excluded, which in turn excludes electroweak baryogenesis in the Minimal Supersymmetric Model. This is a major new finding for the HEP community.
This thesis is very clearly written and the introduction and conclusions are accessible to a wide spectrum of readers.

List of contents

Introduction.- Multiple Higgs and Vector Boson Production.- VLVL VLVL Scattering as a Model Independent Probe of the Higgs Coupling to Vector Bosons.- Supersymmetric Higgs.- Ruling Out Light Stops.- Conclusion.

About the author

          

Summary

This thesis studies collider phenomenology of physics beyond the Standard Model at the Large Hadron Collider (LHC). It also explores in detail advanced topics related to Higgs boson and supersymmetry – one of the most exciting and well-motivated streams in particle physics. In particular, it finds a very large enhancement of multiple Higgs boson production in vector-boson scattering when Higgs couplings to gauge bosons differ from those predicted by the Standard Model. The thesis demonstrates that due to the loss of unitarity, the very large enhancement for triple Higgs boson production takes place. This is a truly novel finding.
The thesis also studies the effects of supersymmetric partners of top and bottom quarks on the Higgs production and decay at the LHC, pointing for the first time to non-universal alterations for two main production processes of the Higgs boson at the LHC–vector boson fusion and gluon–gluon fusion.
Continuing the exploration of Higgs boson and supersymmetry at the LHC, the thesis extends existing experimental analysis and shows that for a single decay channel the mass of the top quark superpartner below 175 GeV can be completely excluded, which in turn excludes electroweak baryogenesis in the Minimal Supersymmetric Model. This is a major new finding for the HEP community.
This thesis is very clearly written and the introduction and conclusions are accessible to a wide spectrum of readers.

Report

  

Product details

Authors Marc Christopher Thomas
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2018
 
EAN 9783319828282
ISBN 978-3-31-982828-2
No. of pages 101
Dimensions 155 mm x 6 mm x 235 mm
Weight 197 g
Illustrations XIV, 101 p. 30 illus., 27 illus. in color.
Series Springer Theses
Springer Theses
Subjects Natural sciences, medicine, IT, technology > Physics, astronomy > Theoretical physics

B, String Theory, Theoretical, Mathematical and Computational Physics, Physics and Astronomy, Quantum field theory, Elementary particles (Physics), Elementary Particles, Quantum Field Theory, Statistical physics, Quantum Field Theories, String Theory

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.