Fr. 189.00

Fuzzy Sets, Rough Sets, Multisets and Clustering

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This book is dedicated to Prof. Sadaaki Miyamoto and presents cutting-edge papers in some of the areas in which he contributed. Bringing together contributions by leading researchers in the field, it concretely addresses clustering, multisets, rough sets and fuzzy sets, as well as their applications in areas such as decision-making.
The book is divided in four parts, the first of which focuses on clustering and classification. The second part puts the spotlight on multisets, bags, fuzzy bags and other fuzzy extensions, while the third deals with rough sets. Rounding out the coverage, the last part explores fuzzy sets and decision-making.

List of contents

On this book: clustering, multisets, rough sets and fuzzy sets.- Part 1: Clustering and Classification.- Contributions of Fuzzy Concepts to Data Clustering.- Fuzzy Clustering/Co-clustering and Probabilistic Mixture Models-induced Algorithms.- Semi-Supervised Fuzzy c-Means Algorithms by Revising Dissimilarity/Kernel Matrices.- Various Types of Objective-Based Rough Clustering.- On Some Clustering Algorithms Based on Tolerance.- Robust Clustering Algorithms Employing Fuzzy-Possibilistic Product Partition.- Consensus-based agglomerative hierarchical clustering.- Using a reverse engineering type paradigm in clustering. An evolutionary pro-gramming based approach.- On Hesitant Fuzzy Clustering and Clustering of Hesitant Fuzzy Data.- Experiences using Decision Trees for Knowledge Discovery.- Part 2: Bags, Fuzzy Bags, and Some Other Fuzzy Extensions.- L-fuzzy Bags.- A Perspective on Differences between Atanassov's Intuitionistic Fuzzy Sets and Interval-valued Fuzzy Sets.- Part 3: Rough Sets.-Attribute Importance Degrees Corresponding to Several Kinds of Attribute Reduction in the Setting of the Classical Rough Sets.- A Review on Rough Set-based Interrelationship Mining.- Part 4: Fuzzy sets and decision making.- OWA Aggregation of Probability Distributions Using the Probabilistic Exceedance Method.- A dynamic average value-at-risk portfolio model with fuzzy random variables.- Group Decision Making: Consensus Approaches based on Soft Consensus Measures.- Construction of capacities from overlap indexes.- Clustering alternatives and learning preferences based on decision attitudes and weighted overlap dominance.

Summary

This book is dedicated to Prof. Sadaaki Miyamoto and presents cutting-edge papers in some of the areas in which he contributed. Bringing together contributions by leading researchers in the field, it concretely addresses clustering, multisets, rough sets and fuzzy sets, as well as their applications in areas such as decision-making.
The book is divided in four parts, the first of which focuses on clustering and classification. The second part puts the spotlight on multisets, bags, fuzzy bags and other fuzzy extensions, while the third deals with rough sets. Rounding out the coverage, the last part explores fuzzy sets and decision-making.

Product details

Assisted by Ander Dahlbom (Editor), Anders Dahlbom (Editor), Yasuo Narukawa (Editor), Vicenç Torra (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2018
 
EAN 9783319837673
ISBN 978-3-31-983767-3
No. of pages 347
Dimensions 156 mm x 22 mm x 235 mm
Weight 551 g
Illustrations X, 347 p. 40 illus., 15 illus. in color.
Series Studies in Computational Intelligence
Studies in Computational Intelligence
Subjects Natural sciences, medicine, IT, technology > Technology > General, dictionaries

B, Artificial Intelligence, engineering, clustering, Computational Intelligence, Intelligent Systems

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.