Fr. 207.00

Non-identifier Based Adaptive Control in Mechatronics - Theory and Application

English · Paperback / Softback

Shipping usually within 6 to 7 weeks

Description

Read more

This book introduces non-identifier-based adaptive control (with and without internal model) and its application to the current, speed and position control of mechatronic systems such as electrical synchronous machines, wind turbine systems, industrial servo systems, and rigid-link, revolute-joint robots.
In mechatronics, there is often only rough knowledge of the system. Due to parameter uncertainties, nonlinearities and unknown disturbances, model-based control strategies can reach their performance or stability limits without iterative controller design and performance evaluation, or system identification and parameter estimation. The non-identifier-based adaptive control presented is an alternative that neither identifies the system nor estimates its parameters but ensures stability. The adaptive controllers are easy to implement, compensate for disturbances and are inherently robust to parameter uncertainties and nonlinearities. For controller implementation only structural system knowledge (like relative degree, input-to-state stable zero dynamics and known sign of the high-frequency gain) is required. Moreover, the presented controllers guarantee reference tracking with prescribed asymptotic or transient accuracy, i.e. the tracking error eventually tends to or for all time evolves within an a priori specified region.
The book presents the theory, modeling and application in a general but detailed and self-contained manner, making it easy to read and understand, particularly for newcomers to the topics covered

List of contents

Motivation and outline.- Brief historical overview of control systems, mechatronics and motion control.- Problem statement for mechatronic systems.- Contributions of this book.- Mathematical preliminaries.- High-gain adaptive stabilization.- High-gain adaptive tracking with internal model.- Adaptive -tracking control.- Funnel control.- Joint position control of rigid-link revolute-joint robotic manipulator.- Conclusion.- Problems and solutions.

Summary

This book introduces non-identifier-based adaptive control (with and without internal model) and its application to the current, speed and position control of mechatronic systems such as electrical synchronous machines, wind turbine systems, industrial servo systems, and rigid-link, revolute-joint robots.
In mechatronics, there is often only rough knowledge of the system. Due to parameter uncertainties, nonlinearities and unknown disturbances, model-based control strategies can reach their performance or stability limits without iterative controller design and performance evaluation, or system identification and parameter estimation. The non-identifier-based adaptive control presented is an alternative that neither identifies the system nor estimates its parameters but ensures stability. The adaptive controllers are easy to implement, compensate for disturbances and are inherently robust to parameter uncertainties and nonlinearities. For controller implementation only structural system knowledge (like relative degree, input-to-state stable zero dynamics and known sign of the high-frequency gain) is required. Moreover, the presented controllers guarantee reference tracking with prescribed asymptotic or transient accuracy, i.e. the tracking error eventually tends to or for all time evolves within an a priori specified region.
The book presents the theory, modeling and application in a general but detailed and self-contained manner, making it easy to read and understand, particularly for newcomers to the topics covered

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.