Fr. 134.00

Stochastic and Infinite Dimensional Analysis

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This volumepresents a collection of papers covering applications from a wide range ofsystems with infinitely many degrees of freedom studied using techniques fromstochastic and infinite dimensional analysis, e.g. Feynman path integrals, thestatistical mechanics of polymer chains, complex networks, and quantum fieldtheory. Systems of infinitely many degrees of freedom create their particularmathematical challenges which have been addressed by different mathematicaltheories, namely in the theories of stochastic processes, Malliavin calculus,and especially white noise analysis.
Theseproceedings are inspired by a conference held on the occasion of Prof. LudwigStreit's 75th birthday and celebrate his pioneering and ongoing work in thesefields.

List of contents

Preface.- Along paths inspired by Ludwig Streit: Stochastic equations for quantum fields and related systems.- Detecting hierarchical communities in net-works: a new approach.- Transition Probabilities for Processes with Memory on Topological Non-trivial Spaces.- Generalized Scaling Operators in White Noise Analysis and Applications to Hamiltonian Path Integrals with Quadratic Action.- Computer Simulations of Self-Repelling Fractional Brownian Motion.- Principal Solutions Revisited.- Laplace operators in gamma analysis.- 38 years with Professor Ludwig Streit.- Quasi-analyticity and determinacy of the full moment problem from finite to infinite dimensions.- Elements for the Retrieval of the Solar Spectrum on the Surface of Mars from an Array of Photodiodes.- Stochastic processes on ends of tree and Dirichlet forms.- Completing Canonical Quantization, and Its Role in Nontrivial Scalar Field Quantization.- Stochastic solutions of nonlinear PDE's and an extension of superprocesses.- Maximum likelihood drift estimation for the mixing of two fractional Brownian motions.- Existence of density for solutions of mixed stochastic equations.

Summary

This volume
presents a collection of papers covering applications from a wide range of
systems with infinitely many degrees of freedom studied using techniques from
stochastic and infinite dimensional analysis, e.g. Feynman path integrals, the
statistical mechanics of polymer chains, complex networks, and quantum field
theory. Systems of infinitely many degrees of freedom create their particular
mathematical challenges which have been addressed by different mathematical
theories, namely in the theories of stochastic processes, Malliavin calculus,
and especially white noise analysis.
These
proceedings are inspired by a conference held on the occasion of Prof. Ludwig
Streit’s 75th birthday and celebrate his pioneering and ongoing work in these
fields.

Product details

Assisted by Christopher C. Bernido (Editor), Maria Victoria Carpio-Bernido (Editor), José Luís da Silva (Editor), Martin Grothaus (Editor), Mar Grothaus et al (Editor), Tobias Kuna (Editor), Maria João Oliveira (Editor), Mari Victoria Carpio-Bernido (Editor), Maria Victoria Carpio-Bernido (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2018
 
EAN 9783319791555
ISBN 978-3-31-979155-5
No. of pages 300
Dimensions 155 mm x 17 mm x 235 mm
Weight 476 g
Illustrations X, 300 p. 12 illus., 5 illus. in color.
Series Trends in Mathematics
Trends in Mathematics
Subject Natural sciences, medicine, IT, technology > Mathematics > Probability theory, stochastic theory, mathematical statistics

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.