Fr. 69.00

System Reduction for Nanoscale IC Design

English · Paperback / Softback

Shipping usually within 1 to 2 weeks (title will be printed to order)

Description

Read more

This book describes the computational challenges posed by the progression toward nanoscale electronic devices and increasingly short design cycles in the microelectronics industry, and proposes methods of model reduction which facilitate circuit and device simulation for specific tasks in the design cycle.
The goal is to develop and compare methods for system reduction in the design of high dimensional nanoelectronic ICs, and to test these methods in the practice of semiconductor development. Six chapters describe the challenges for numerical simulation of nanoelectronic circuits and suggest model reduction methods for constituting equations. These include linear and nonlinear differential equations tailored to circuit equations and drift diffusion equations for semiconductor devices. The performance of these methods is illustrated with numerical experiments using real-world data. Readers will benefit from an up-to-date overview of the latest model reduction methods in computational nanoelectronics.

List of contents

Preface.- 1 Model order reduction of integrated circuits in electrical networks: Michael Hinze, Martin Kunkel, Ulrich Matthes, and Morten Vierling.- 2 Element-based model reduction in circuit simulation: Andreas Steinbrecher and Tatjana Stykel.- 3 Reduced Representation of Power Grid Models: Peter Benner and André Schneider.- 4 Coupling of numeric/symbolic reduction methods for generating parametrized models of nanoelectronic systems: Oliver Schmidt, Matthias Hauser, and Patrick Lang.- 5 Low-Rank Cholesky Factor Krylov Subspace Methods for Generalized Projected Lyapunov Equations: Matthias Bollhöfer and André K. Eppler.- Index.

Summary

This book describes the computational challenges posed by the progression toward nanoscale electronic devices and increasingly short design cycles in the microelectronics industry, and proposes methods of model reduction which facilitate circuit and device simulation for specific tasks in the design cycle.
The goal is to develop and compare methods for system reduction in the design of high dimensional nanoelectronic ICs, and to test these methods in the practice of semiconductor development. Six chapters describe the challenges for numerical simulation of nanoelectronic circuits and suggest model reduction methods for constituting equations. These include linear and nonlinear differential equations tailored to circuit equations and drift diffusion equations for semiconductor devices. The performance of these methods is illustrated with numerical experiments using real-world data. Readers will benefit from an up-to-date overview of the latest model reduction methods in computational nanoelectronics.

Product details

Assisted by Pete Benner (Editor), Peter Benner (Editor)
Publisher Springer, Berlin
 
Languages English
Product format Paperback / Softback
Released 01.01.2018
 
EAN 9783319791548
ISBN 978-3-31-979154-8
No. of pages 197
Dimensions 153 mm x 235 mm x 12 mm
Weight 344 g
Illustrations XI, 197 p. 73 illus., 39 illus. in color.
Series Mathematics in Industry
Mathematics in Industry
Subject Natural sciences, medicine, IT, technology > IT, data processing > General, dictionaries

Customer reviews

No reviews have been written for this item yet. Write the first review and be helpful to other users when they decide on a purchase.

Write a review

Thumbs up or thumbs down? Write your own review.

For messages to CeDe.ch please use the contact form.

The input fields marked * are obligatory

By submitting this form you agree to our data privacy statement.